Skip to main content

Fast NumPy array functions written in C

Project description

Bottleneck is a collection of fast NumPy array functions written in C.

Let’s give it a try. Create a NumPy array:

>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])

Find the nanmean:

>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0

Moving window mean:

>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. ,  1.5,  2. ,  4. ,  4.5])

Benchmark

Bottleneck comes with a benchmark suite:

>>> bn.bench()
Bottleneck performance benchmark
    Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
    Speed is NumPy time divided by Bottleneck time
    NaN means approx one-fifth NaNs; float64 used

              no NaN     no NaN      NaN       no NaN      NaN
               (100,)  (1000,1000)(1000,1000)(1000,1000)(1000,1000)
               axis=0     axis=0     axis=0     axis=1     axis=1
nansum         29.7        1.4        1.6        2.0        2.1
nanmean        99.0        2.0        1.8        3.2        2.5
nanstd        145.6        1.8        1.8        2.7        2.5
nanvar        138.4        1.8        1.8        2.8        2.5
nanmin         27.6        0.5        1.7        0.7        2.4
nanmax         26.6        0.6        1.6        0.7        2.5
median        120.6        1.3        4.9        1.1        5.7
nanmedian     117.8        5.0        5.7        4.8        5.5
ss             13.2        1.2        1.3        1.5        1.5
nanargmin      66.8        5.5        4.8        3.5        7.1
nanargmax      57.6        2.9        5.1        2.5        5.3
anynan         10.2        0.3       52.3        0.8       41.6
allnan         15.1      196.0      156.3      135.8      111.2
rankdata       45.9        1.2        1.2        2.1        2.1
nanrankdata    50.5        1.4        1.3        2.4        2.3
partition       3.3        1.1        1.6        1.0        1.5
argpartition    3.4        1.2        1.5        1.1        1.6
replace         9.0        1.5        1.5        1.5        1.5
push         1565.6        5.9        7.0       13.0       10.9
move_sum     2159.3       31.1       83.6      186.9      182.5
move_mean    6264.3       66.2      111.9      361.1      246.5
move_std     8653.6       86.5      163.7      232.0      317.7
move_var     8856.0       96.3      171.6      267.9      332.9
move_min     1186.6       13.4       30.9       23.5       45.0
move_max     1188.0       14.6       29.9       23.5       46.0
move_argmin  2568.3       33.3       61.0       49.2       86.8
move_argmax  2475.8       30.9       58.6       45.0       82.8
move_median  2236.9      153.9      151.4      171.3      166.9
move_rank     847.1        1.2        1.4        2.3        2.6

You can also run a detailed benchmark for a single function using, for example, the command:

>>> bn.bench_detailed("move_median", fraction_nan=0.3)

Only arrays with data type (dtype) int32, int64, float32, and float64 are accelerated. All other dtypes result in calls to slower, unaccelerated functions. In the rare case of a byte-swapped input array (e.g. a big-endian array on a little-endian operating system) the function will not be accelerated regardless of dtype.

Where

download

https://pypi.python.org/pypi/Bottleneck

docs

https://bottleneck.readthedocs.io

code

https://github.com/pydata/bottleneck

mailing list

https://groups.google.com/group/bottle-neck

License

Bottleneck is distributed under a Simplified BSD license. See the LICENSE file and LICENSES directory for details.

Install

Requirements:

Bottleneck

Python 2.7, 3.5, 3.6, 3.7, 3.8; NumPy 1.16.0+

Compile

gcc, clang, MinGW or MSVC

Unit tests

pytest

Documentation

sphinx, numpydoc

To install Bottleneck on Linux, Mac OS X, et al.:

$ pip install .

To install bottleneck on Windows, first install MinGW and add it to your system path. Then install Bottleneck with the command:

python setup.py install --compiler=mingw32

Alternatively, you can use the Windows binaries created by Christoph Gohlke: http://www.lfd.uci.edu/~gohlke/pythonlibs/#bottleneck

Unit tests

After you have installed Bottleneck, run the suite of unit tests:

In [1]: import bottleneck as bn

In [2]: bn.test()
============================= test session starts =============================
platform linux -- Python 3.7.4, pytest-4.3.1, py-1.8.0, pluggy-0.12.0
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/chris/code/bottleneck/.hypothesis/examples')
rootdir: /home/chris/code/bottleneck, inifile: setup.cfg
plugins: openfiles-0.3.2, remotedata-0.3.2, doctestplus-0.3.0, mock-1.10.4, forked-1.0.2, cov-2.7.1, hypothesis-4.32.2, xdist-1.26.1, arraydiff-0.3
collected 190 items

bottleneck/tests/input_modification_test.py ........................... [ 14%]
..                                                                      [ 15%]
bottleneck/tests/list_input_test.py .............................       [ 30%]
bottleneck/tests/move_test.py .................................         [ 47%]
bottleneck/tests/nonreduce_axis_test.py ....................            [ 58%]
bottleneck/tests/nonreduce_test.py ..........                           [ 63%]
bottleneck/tests/reduce_test.py ....................................... [ 84%]
............                                                            [ 90%]
bottleneck/tests/scalar_input_test.py ..................                [100%]

========================= 190 passed in 46.42 seconds =========================
Out[2]: True

If developing in the git repo, simply run py.test

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bottleneck-1.3.7rc1.tar.gz (103.1 kB view details)

Uploaded Source

Built Distributions

Bottleneck-1.3.7rc1-cp311-cp311-win_amd64.whl (109.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

Bottleneck-1.3.7rc1-cp311-cp311-win32.whl (104.8 kB view details)

Uploaded CPython 3.11 Windows x86

Bottleneck-1.3.7rc1-cp311-cp311-musllinux_1_1_x86_64.whl (400.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

Bottleneck-1.3.7rc1-cp311-cp311-musllinux_1_1_i686.whl (408.6 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

Bottleneck-1.3.7rc1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (358.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.7rc1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (363.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.7rc1-cp311-cp311-macosx_10_9_x86_64.whl (115.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

Bottleneck-1.3.7rc1-cp310-cp310-win_amd64.whl (109.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

Bottleneck-1.3.7rc1-cp310-cp310-win32.whl (104.8 kB view details)

Uploaded CPython 3.10 Windows x86

Bottleneck-1.3.7rc1-cp310-cp310-musllinux_1_1_x86_64.whl (396.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

Bottleneck-1.3.7rc1-cp310-cp310-musllinux_1_1_i686.whl (404.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

Bottleneck-1.3.7rc1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (354.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.7rc1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (359.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.7rc1-cp310-cp310-macosx_10_9_x86_64.whl (115.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

Bottleneck-1.3.7rc1-cp39-cp39-win_amd64.whl (109.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

Bottleneck-1.3.7rc1-cp39-cp39-win32.whl (104.8 kB view details)

Uploaded CPython 3.9 Windows x86

Bottleneck-1.3.7rc1-cp39-cp39-musllinux_1_1_x86_64.whl (394.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

Bottleneck-1.3.7rc1-cp39-cp39-musllinux_1_1_i686.whl (402.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

Bottleneck-1.3.7rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (353.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.7rc1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (358.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.7rc1-cp39-cp39-macosx_10_9_x86_64.whl (115.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

Bottleneck-1.3.7rc1-cp38-cp38-win_amd64.whl (109.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

Bottleneck-1.3.7rc1-cp38-cp38-win32.whl (104.8 kB view details)

Uploaded CPython 3.8 Windows x86

Bottleneck-1.3.7rc1-cp38-cp38-musllinux_1_1_x86_64.whl (398.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

Bottleneck-1.3.7rc1-cp38-cp38-musllinux_1_1_i686.whl (406.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

Bottleneck-1.3.7rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (355.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.7rc1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (359.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.7rc1-cp38-cp38-macosx_10_9_x86_64.whl (115.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

Bottleneck-1.3.7rc1-cp37-cp37m-win_amd64.whl (109.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

Bottleneck-1.3.7rc1-cp37-cp37m-win32.whl (104.6 kB view details)

Uploaded CPython 3.7m Windows x86

Bottleneck-1.3.7rc1-cp37-cp37m-musllinux_1_1_x86_64.whl (397.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

Bottleneck-1.3.7rc1-cp37-cp37m-musllinux_1_1_i686.whl (405.6 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

Bottleneck-1.3.7rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (355.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.7rc1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (360.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.7rc1-cp37-cp37m-macosx_10_9_x86_64.whl (114.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

Bottleneck-1.3.7rc1-cp36-cp36m-win_amd64.whl (109.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

Bottleneck-1.3.7rc1-cp36-cp36m-win32.whl (104.6 kB view details)

Uploaded CPython 3.6m Windows x86

Bottleneck-1.3.7rc1-cp36-cp36m-musllinux_1_1_x86_64.whl (394.0 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

Bottleneck-1.3.7rc1-cp36-cp36m-musllinux_1_1_i686.whl (401.9 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

Bottleneck-1.3.7rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (351.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.3.7rc1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (356.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.3.7rc1-cp36-cp36m-macosx_10_9_x86_64.whl (114.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file Bottleneck-1.3.7rc1.tar.gz.

File metadata

  • Download URL: Bottleneck-1.3.7rc1.tar.gz
  • Upload date:
  • Size: 103.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Bottleneck-1.3.7rc1.tar.gz
Algorithm Hash digest
SHA256 b48dd84dedc987da66f6425192bdf4b0a22c78be4488fed9e5674b9374680f08
MD5 46128d742685d3e0fa722c94e041747c
BLAKE2b-256 ad65b71dbac889f748ddf7fee50d7d84ca5caad0e205257a1aa9aad5b4903a03

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 baaa138996c50da11cf1e0beafdf6c2f04725525281a09f3856b05d05b3ed126
MD5 7737565f890a0e13cad5d145025f318a
BLAKE2b-256 8636734d86c785f7c8b89b21945579edc21a51a1a1289a8d6500be71810a32e4

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ffa4638eb14f533efebac5f756bd6413c8ffa2ffe36102320d5c342a05a21234
MD5 f28aed5cb39d55df40a7798f40a835bf
BLAKE2b-256 0cdccbb8d1ab4e554ceeb1442a51f24a0348f197377913f640407f538f34da3e

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 70bda40efa6ad48735e72c74c0f965be9063f519394444843e429d9812303ef5
MD5 792ab0f9a9296d9f53932239b818c635
BLAKE2b-256 4db68afb239dd276ae8033822546c9c08680bb97789b66f8dc7c4b1ecea84831

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7d4fab61562ebf9257a708ecb560387a6274b8a027d0a2020a52ab2810db2193
MD5 e31656ac9116536c76e28b83833bea09
BLAKE2b-256 a7b2a8f0866f8a2480ff4ecf6da020b4a77640ecb59d9bfd06fd713ac2370f0f

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0d1ba73541930492d98b81eb1b38dab2e77eb79628087197826eedd8667259b
MD5 1fa0de31f93dcbf6acf4b9defb4c1830
BLAKE2b-256 9f9ad1e92b265068b80b8709439509e212494a48c6487bd5b4d92387c7bea5b3

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6fdce4fa9e6cd07e8d8df9354d60573c89a68fd8dfdf5006a92c58673b19d5c6
MD5 3a2fcd1bf83f644437eda6e54bbdbf5c
BLAKE2b-256 9729d09754c7c19473990da7da73e99101ac73e31b5584729e80dfe5a7a1e145

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f7b4b872c7b4982dc5c31ce29d3f6adcc9df4368e7aac2280f7ea3bde8a255aa
MD5 38850bcb164af46950b0f1fca3159e98
BLAKE2b-256 2558ebaeb4c4a896214efde87884e72f69fed91e88a9139b9b67435e23569624

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 081e8ff1e2034571a83e7e923581bdcfa06ad009b72a2991373c79decb2ce6fc
MD5 8dc7de100f3e9d11fc994bafd4ae27c0
BLAKE2b-256 fe9a1ec9a34f89b40e5033b8420f6a360ccd51b6e84ab6ab1d5fa3c29a634911

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 880012ebad87d5dcafd55144a3f4698f9428548474e3822f4013ed99445270f9
MD5 ae006b2fb14e0f295d658476a37307b8
BLAKE2b-256 7c4b569965a8796800c8ccdc8e6bdeb9d0e409d2082e359c54d65f0013fc3326

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aeb2290c26b6c2f99eac4433e075ecf2a5b350bd1605f23c73af72784ddd7bce
MD5 85313be6b2f5392901306c1df42aca49
BLAKE2b-256 3219b1a9ed6dddea41cbfe7d468aaa2233a098cdb416a22eb5f9f1a530dc6713

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 17a062f8b07f52ac92fa676982eb253d03ccc539a6e70a892f550a1a9396132a
MD5 7edbd88a2a6d39c1947a57dc5d0ed371
BLAKE2b-256 06407415f626f905c537ce33138dffbf728a08ffc6acf762269156e2396c9698

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c9cb0cd93f6823f610f5cc9be5dd62dbbcba563dfd2d1d8fdfd2b483dc54115
MD5 b9e7fc8dd6b7e4cc95599e37d23a1b51
BLAKE2b-256 89ccc5d62b55f9751f2d5cf2b49010dc2280756642941cd7809d511f6322fd8d

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7ce8d7504c4677474329f58284730f948f5b9794d8fc4346dd4a9bc35fb0b1c6
MD5 ec379d96764c0fc76e71b2b752b3e702
BLAKE2b-256 9bae3ff9a32e14fb4f42af333667fa11ac6b1ecd06cf26330eb12c2ce8928ab2

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c0b6548efb847a5bc5bc8b9f3dab87f9251cb455e665f9bb90088cfcde51dbf5
MD5 03e87895f2a13abb4dff7ec47b86f548
BLAKE2b-256 e9aec41720f2913bab5394f622dd5aabbbe8959bad2b36b82d342c6f52d8aabd

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b0220f540d582e3020323cb8bd0e666a929ae722e22ff8bbfbf1bc410bed47f3
MD5 9f1155f67a3af6c7fbe6241154dfcbaf
BLAKE2b-256 638042f6d260b822ffe0ba8f6701d342b3219bf161ca8b21d56cb9e43d654a41

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp39-cp39-win32.whl.

File metadata

  • Download URL: Bottleneck-1.3.7rc1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 104.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Bottleneck-1.3.7rc1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 dd1606fb0db84e8dabbdf61dbdaa766afccfe403080676a10771c3e9e5a9d1c8
MD5 5130181076a38cbf6958327d5f2a6b92
BLAKE2b-256 02773b5d2aef3d8e047c1b954e9ed6b77442e5c4720a774c1cbdb56266069182

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b545f67adb8f10881096213cc0c91291f06ae117eeef4c17b096009476ae5a73
MD5 ec8076ac937f1f56c21e723b07f34909
BLAKE2b-256 b77ef355a789f3c537c80b9db6a74ccb9fbb51c810b532691751edf482c4454e

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 00a7e47bafcfbb72a9d524cee9d6f11b838b25fb3e5c0543df8a4620026decc2
MD5 bbaf209a998d8015d26db290bdebcf35
BLAKE2b-256 fabb449c8ffe496b4b15191393a492e12f12130f1999377ab85cca7cfaee651b

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d1ae738fd635266e3ff8cdcade4951c8d79c7d06a56d74f3bdc774751186f42c
MD5 81b58282ed647a552c64364ad9ec94bb
BLAKE2b-256 8f8d1821e2a9a7a1704ac827c7845c4a2d21ff9b7906c133fe183fdd6b21c2c9

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7d41472748f133f2e8bd94182222b9f1833623b8b74ded30d3de004168c5eb1c
MD5 a1e8a044cfc44c93687221ff5af5c421
BLAKE2b-256 cf8804d8c8ed0cbf571032ee3252d67cf8143f9129077b8ec047048953b4ad74

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9db658ff0e2b8c61d8bc46b6c3a4e1d7c8f6f11b0c1054d06961a76649e6e83b
MD5 5087632a6060896999c8a4af4b54f4ea
BLAKE2b-256 4e419adb932cc76f64b7c1eb5e70ffd2aa22e745601f0552313949e2a0a41efc

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1ed2b2b395efed30f11aab216ce6a2e34d36fd7b5e7f1eec84b68e41a2ba736d
MD5 1fbb6dd476c64f5604872ead8128cf9f
BLAKE2b-256 ba2c42e063664353e2006c9d6d4ba98491d5672b2da32645ad67c3a4a2b37ab6

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp38-cp38-win32.whl.

File metadata

  • Download URL: Bottleneck-1.3.7rc1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 104.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Bottleneck-1.3.7rc1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0b98de28e0471b2386b910b9821186646b5c0bce56a831db2a0a5a30f0783df5
MD5 9aac08a1a7699c3c0d1adb8bdfe92841
BLAKE2b-256 15d70cc568aa892f8ca43a0f0b97668c5f7e82176e3e6733bb8d92c1f183e6e3

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 92b2bec36d6ff207c18d411042b2aeda2318b91bfeae7f8f900bf37a898fa57c
MD5 f1960024ff18e46b3e6f7b86f51c49dc
BLAKE2b-256 bcc22d85be50e7a42b3aa33bb11974b2ae5f394e2b8823378c93594adec77750

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5b83c5f28d58bdd0492d5829e52e75b732cc1c15cf34eab4056779fa68ef7b13
MD5 cb22fe8cbdb92f6235102ee91f81364b
BLAKE2b-256 58702fc84f4d931cbed1e2614a79f01ca80bf15aa9032fc4a9ff2f6e236f0306

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8070b5817b103cb2da1314468f8456835860c6ff2ef0cba5aaca21ac6572f9e
MD5 4e7f4859310d740ed80a49a8e4869913
BLAKE2b-256 ed5f0cabc9cc8f51dd50eb38dc18dca38f9760513aac1142d19993373ce6f080

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba9720c91be94ba25bfb54e114d59351d5d7df026a0acb9c2a6b9e831dc1bbbb
MD5 1821627b5c48662b7444d4f07ac1e4c9
BLAKE2b-256 60a85af730917a9023b67a18d69d925203d7560e7bf08c6ac54d24636bd96c08

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 627b42d2637e16731ba1651c9bf8df2e1fda041b5a82b4f9c312447043e86806
MD5 0034e12d94db0b9c4c0f14a812c958ac
BLAKE2b-256 ad72bd7f43803a196dd11c4097f1fc5a74f0191f231d775d6c558a8a6fdef812

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ce828beb5dd8a823c5862a10f151e4746acf2dbaec24602a77047866d6a4066f
MD5 21affd1300d0819c5548a142e3eae4d1
BLAKE2b-256 abda51283a3714df7900a29c093681e273a66f5e7cb979795b5b483bfbf53404

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 612fb71cd45dd4f61e529c3338afa27b7bd55344b237c5eeace240b3432809a5
MD5 4b2ee6c4bbc67ea24a14be197020dc94
BLAKE2b-256 39dccfe8b2655ea1d505523e957f7ad60f10fb7e6b926d6232e65ca5cae8e7fd

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a22ce9f1839854673f9d5538005101e4ba436fd99c625e331190c3effee83e5b
MD5 b905a8e19d8d29b4724a631ea5e15603
BLAKE2b-256 d11e0e8646d125b8e4c07b48c850b7715ab5702a0b72750c85548f41070ad17c

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c91c8247a8518b7d62dc1efb78f8f358befc0bef443eff3f8063a4ca8c5fc10a
MD5 e89a8b5ec7c088b0797ef0394dff606e
BLAKE2b-256 1ea6b71ae08343ea067d8e98f14f815847f1a047ac09dbdcedbf6a11b98c1da6

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d6c69f0f1fbdf1b3ca53b5f68d1fce82b8a0595f3ea139e135db3931a873523
MD5 85acf82b6c7a34450ab694780460dc2d
BLAKE2b-256 b203140f2d3361eb6606bb7436c634e49e84afc07b12584485fe1b79dd1832b6

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 afbf701d5299fdc95e673a46a5bb20137ef8ead679c0b4006c0c6ea02f338ad1
MD5 620e2653ed3d3af6c1e82ee077581d24
BLAKE2b-256 0f91986d3067c240c24c979bbad7e8e4d2e5f627d34b4d6aae0aa2bb98e09f81

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 15f44d9d48f0ed111e430c425005010ff0efb72bc17b77cacc8136d2511195b3
MD5 84a09c4131603a5a7bea001cc220d9e2
BLAKE2b-256 732fb5375195573e90601142c64b637cafb58d82079ff37b287a446bf53d826b

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 581c11a6fd208aab471a9b23fac7c5fda378d1818576619f4a585091add1af3f
MD5 3891922bed29c1c9990549448c58d091
BLAKE2b-256 088452741c9321c0958aa4caa5c2ad859e36bc39f0871cf8fb69fd36d35ae589

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b271fc89f1f4b498e51f35832c69ef6f05b4930238a0fdf7838b9f803c692dd5
MD5 48385d26336fa62d7460a7c1d53f00cf
BLAKE2b-256 4d282c911d2bd980c14a628360735fc5d076d7f88738a1d34facea2ad67b0d0e

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cc51bbce967e41916ba73bc3dded8957bc8f531f3edf431c7c815768631993d0
MD5 6d0215c863082cef530b3d37bea8494e
BLAKE2b-256 e20261f7469f6ff9ae07485f87cf608decd2dae68fb6095724467c035e9095cd

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9f9643124c6a85947b48ca851bc7aa5c7567beabb997c8122b6175ea52e74154
MD5 901e280594ff5cb00eca5f497cfd82a7
BLAKE2b-256 1f59e46d241376bf6928833600fb9940e251857b028ed13de56e58d66df5933d

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f3e22d697ac5d6891c50a5f9c367be5a467e5c6d310a81f7ea883aedb207feb
MD5 b87e648f339f0d5f96d917a882723f4c
BLAKE2b-256 4b763c4f0e4b17f3759f8bc908b355990e3e609fc1c4a1c7b63ab3678358576d

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ae067cd3507408f2e0d96fe404baefba69dd8504b1170bd46c0594efb2df974b
MD5 40be66eff5ddc2b5de1430fe0bb1a163
BLAKE2b-256 1aac541825d0f44e980fd9587290a7abc9787c48f5e509c705e837c4bb5c8ef4

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.3.7rc1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.3.7rc1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 160488e56345ab5c8f617e01745c18b20e312ef56fc5cd8d3106fa7aa120accc
MD5 663092e2ec33d885e3e811a881425e48
BLAKE2b-256 5e4ed959ea615c038cfdeb8cf052a27b35984e14b8cfcdeddf0c8e38b3056f73

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page