Skip to main content

COPEX high rate compression quality metrics

Project description

COPEX High Rate Compression Quality Metrics

This package provides quality metrics for high rate compression.

Installation

pip install COPEX_high_rate_compression_quality_metrics

Library usage

Comparison of Two Multiband TIFF Images via LRSP (L:LPIPS, R:RMSE, S:SSIM, P:PSNR)

the following shows concrete example of use of the library

Steps:

  1. Import necessary libraries
  2. Initialize the model and specify the file paths
  3. Define preprocessing functions
  4. Load the TIFF files
  5. Calculate the metrics

1 Library install / import

use "pip install COPEX-high-rate-compression-quality-metrics" to install the library

# Array handler
import numpy as np
# to have a json formated output
import json
import math
# File handler
from skimage import io

# File path handler
import os

# Metrics and utils
import COPEX_high_rate_compression_quality_metrics.metrics as COPEX_metrics
import COPEX_high_rate_compression_quality_metrics.utils as COPEX_utils

2 LPIPS initialization

# LPIPS initialization
loss_fn = COPEX_metrics.initialize_LPIPS()

3 File path definition

# Specify file paths here
file_path1 = os.path.join('T28PGV_20160318T111102_B04_20m.tif')
file_path2 = os.path.join('T28PGV_20160318T111102_B04_20m_ter.tif')

4 File loading

#load images and show shapes
image1 = io.imread(file_path1)
print(file_path1," [shape =",image1.shape,", min =",np.min(image1), ", max =",np.max(image1), ", dtype = ",image1.dtype,"]")
image2 = io.imread(file_path2)
print(file_path2," [shape =",image2.shape,", min =",np.min(image2), ", max =",np.max(image2), ", dtype = ",image2.dtype,"]")


# checking if images have the same shape
if image1.shape != image2.shape:
    raise ValueError("Les deux images doivent avoir les mêmes dimensions.")
print("images loaded with success.")

File visualization (optional)

COPEX_utils.display_multiband_tiffs(image1, image2)

png

5 metrics calculation

# Calculate all metrics
lpips_values,lpips_value = COPEX_metrics.calculate_lpips_multiband(image1, image2,loss_fn)
mean_ssim = COPEX_metrics.calculate_ssim_multiband(image1, image2)
psnr_value = COPEX_metrics.calculate_psnr(image1, image2)
rmse_value = COPEX_metrics.calculate_rmse(image1, image2)

Results interpretation

see VT-P382-SLD-003-E-01-00_COPEX_DCC_PM3_20230630.pdf for more informations about metrics weeknesses

LPIPS : (identical images) 0 <==========> 1 (completely different images) lower is better [very good LPIPS do not mean that images are not totaly different pixel wise]

RMSE : (identical images) 0 <==========> +inf (completely different images) lower is better [different kind of degradations can give the same score, do not capture blurring]

SSIM : (completely different images) -1 <==========> 1 (identical images) higher is better [sensible to little local distorions, sensible to noise differences]

PSNR : (completely different images) 0 <==========> +inf (identical images) higher is better [sensible to Big local differences]

data = {
    "files paths":{
        "file1":file_path1,
        "file2":file_path2
        },
    "metrics":{
        "LPIPS":lpips_value,
        "RMSE":rmse_value,
        "SSIM":mean_ssim,
        "PSNR":str(psnr_value) if math.isinf(psnr_value) else psnr_value     
    }
}
json_data = json.dumps(data, indent=4)

print(json_data)
    {
        "files paths": {
            "file1": "T28PGV_20160318T111102_B04_20m.tif",
            "file2": "T28PGV_20160318T111102_B04_20m_ter.tif"
        },
        "metrics": {
            "LPIPS": 0.038381848484277725,
            "RMSE": 192.01308995822703,
            "SSIM": 0.9817911582274915,
            "PSNR": 26.491058156522357
        }
    }

Json builder

auto_update the bensh algo json file automaticly

1 import library

import COPEX_high_rate_compression_quality_metrics.json_builder as json_builder
import COPEX_high_rate_compression_quality_metrics.metrics as metrics

2 define pathparameters

root_directory = "data"
dataset_name = "RANDOM"
test_case_number = 4
nnvvppp_algoname = "01-01-002_JPEG2000"

3 calculate generics/thematics in any order you want

#json_builder.initialize_json(root_directory=root_directory, dataset_name=dataset_name,test_case_number=test_case_number,nnvvppp_algoname=nnvvppp_algoname)
json_builder.make_generic(root_directory=root_directory,
                          dataset_name=dataset_name,
                          test_case_number=test_case_number,
                          nnvvppp_algoname=nnvvppp_algoname)

json_builder.make_thematic(root_directory=root_directory,
                           dataset_name=dataset_name,
                           test_case_number=test_case_number,
                           nnvvppp_algoname=nnvvppp_algoname,
                           thematic_function=metrics.calculate_thematic_modular_test,
                           thematic_args=(5, 3),
                           thematic_kwargs={})

4 look at results

{
    "original_size": 525312,
    "compressed_size": 48637,
    "compression_factor": 10.8,
    "compression_time": 253,
    "decompression_time": 432,
    "compression_algorithm": "01-01-002_JPEG2000",
    "algorithm_version": "01",
    "compression_parameter": "002",
    "metrics": {
        "LPIPS": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 0.15013514459133148,
                "4c_256_256_random_band_2.tif": 0.1589806228876114,
                "4c_256_256_random_band_3.tif": 0.1509121209383011,
                "4c_256_256_random_band_4.tif": 0.1467234492301941
            },
            "average": 0.152,
            "stdev": 0.004
        },
        "SSIM": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 0.01048029893613139,
                "4c_256_256_random_band_2.tif": -0.0020971790915714186,
                "4c_256_256_random_band_3.tif": 0.007405245569149331,
                "4c_256_256_random_band_4.tif": 0.005087706587301147
            },
            "average": 0.005,
            "stdev": 0.005
        },
        "PSNR": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 7.801028498092282,
                "4c_256_256_random_band_2.tif": 7.75118324229439,
                "4c_256_256_random_band_3.tif": 7.785848197523122,
                "4c_256_256_random_band_4.tif": 7.762412297083275
            },
            "average": 7.775,
            "stdev": 0.019
        },
        "RMSE": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 26694.50541651717,
                "4c_256_256_random_band_2.tif": 26847.72648228625,
                "4c_256_256_random_band_3.tif": 26740.79206290665,
                "4c_256_256_random_band_4.tif": 26813.04036306841
            },
            "average": 26774.016,
            "stdev": 59.962
        }
    },
    "thematic_modular_test_1": {
        "library": null,
        "version": "0.1",
        "date": "2024-08-19 16:53:07",
        "metrics": {
            "global": {
                "result": {
                    "band_name_1": 18,
                    "band_name_2": 19
                },
                "average": 18.5,
                "stdev": 0.5
            }
        }
    }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file COPEX_high_rate_compression_quality_metrics-0.1.2.tar.gz.

File metadata

File hashes

Hashes for COPEX_high_rate_compression_quality_metrics-0.1.2.tar.gz
Algorithm Hash digest
SHA256 56d94bac69cd2a157e5ccc7a8d85d68acbba076c9c4875adf112c3f7cb784053
MD5 b611b4eb8d334af10310fde50c497b4d
BLAKE2b-256 9b3c574a56ed006ee1349c68ca1f84ee061fbf07543debb9f3dcf37dbc6d3974

See more details on using hashes here.

Provenance

File details

Details for the file COPEX_high_rate_compression_quality_metrics-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for COPEX_high_rate_compression_quality_metrics-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 45fbbb22c87aa938ca17f04663b69be72a6ac9eca4dcd60cf6eba3bcdddbde78
MD5 678ce338698e7c38eee352389c6ceff1
BLAKE2b-256 41ce127e7c8ef7bfe185d8c71bec25755e4a0e82066716c99480e495a57023d2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page