Skip to main content

COPEX high rate compression quality metrics

Project description

COPEX High Rate Compression Quality Metrics

This package provides quality metrics for high rate compression.

Installation

pip install COPEX_high_rate_compression_quality_metrics

Library usage

Comparison of Two Multiband TIFF Images via LRSP (L:LPIPS, R:RMSE, S:SSIM, P:PSNR)

the following shows concrete example of use of the library

Steps:

  1. Import necessary libraries
  2. Initialize the model and specify the file paths
  3. Define preprocessing functions
  4. Load the TIFF files
  5. Calculate the metrics individually
  6. Json Builder

1 Library install / import

use "pip install COPEX-high-rate-compression-quality-metrics" to install the library

# Array handler
import numpy as np
# to have a json formated output
import json
import math
# File handler
from skimage import io

# File path handler
import os

# Metrics and utils
import COPEX_high_rate_compression_quality_metrics.metrics as COPEX_metrics
import COPEX_high_rate_compression_quality_metrics.utils as COPEX_utils

2 LPIPS initialization

# LPIPS initialization
loss_fn = COPEX_metrics.initialize_LPIPS()

3 File path definition

# Specify file paths here
file_path1 = os.path.join('T28PGV_20160318T111102_B04_20m.tif')
file_path2 = os.path.join('T28PGV_20160318T111102_B04_20m_ter.tif')

4 File loading

#load images and show shapes
image1 = io.imread(file_path1)
print(file_path1," [shape =",image1.shape,", min =",np.min(image1), ", max =",np.max(image1), ", dtype = ",image1.dtype,"]")
image2 = io.imread(file_path2)
print(file_path2," [shape =",image2.shape,", min =",np.min(image2), ", max =",np.max(image2), ", dtype = ",image2.dtype,"]")


# checking if images have the same shape
if image1.shape != image2.shape:
    raise ValueError("Les deux images doivent avoir les mêmes dimensions.")
print("images loaded with success.")

File visualization (optional)

COPEX_utils.display_multiband_tiffs(image1, image2)

png

5 metrics calculation

# Calculate all metrics
lpips_values,lpips_value = COPEX_metrics.calculate_lpips_multiband(image1, image2,loss_fn)
mean_ssim = COPEX_metrics.calculate_ssim_multiband(image1, image2)
psnr_value = COPEX_metrics.calculate_psnr(image1, image2)
rmse_value = COPEX_metrics.calculate_rmse(image1, image2)

Results interpretation

see VT-P382-SLD-003-E-01-00_COPEX_DCC_PM3_20230630.pdf for more informations about metrics weeknesses

LPIPS : (identical images) 0 <==========> 1 (completely different images) lower is better [very good LPIPS do not mean that images are not totaly different pixel wise]

RMSE : (identical images) 0 <==========> +inf (completely different images) lower is better [different kind of degradations can give the same score, do not capture blurring]

SSIM : (completely different images) -1 <==========> 1 (identical images) higher is better [sensible to little local distorions, sensible to noise differences]

PSNR : (completely different images) 0 <==========> +inf (identical images) higher is better [sensible to Big local differences]

data = {
    "files paths":{
        "file1":file_path1,
        "file2":file_path2
        },
    "metrics":{
        "LPIPS":lpips_value,
        "RMSE":rmse_value,
        "SSIM":mean_ssim,
        "PSNR":str(psnr_value) if math.isinf(psnr_value) else psnr_value     
    }
}
json_data = json.dumps(data, indent=4)

print(json_data)
    {
        "files paths": {
            "file1": "T28PGV_20160318T111102_B04_20m.tif",
            "file2": "T28PGV_20160318T111102_B04_20m_ter.tif"
        },
        "metrics": {
            "LPIPS": 0.038381848484277725,
            "RMSE": 192.01308995822703,
            "SSIM": 0.9817911582274915,
            "PSNR": 26.491058156522357
        }
    }

Json builder

auto_update the bensh algo json file automaticly

1 import library

import COPEX_high_rate_compression_quality_metrics.json_builder as json_builder
import COPEX_high_rate_compression_quality_metrics.metrics as metrics

2 define pathparameters

root_directory = "data"
dataset_name = "RANDOM"
test_case_number = 4
nnvvppp_algoname = "01-01-002_JPEG2000"

3 calculate generics/thematics in any order you want

#json_builder.initialize_json(root_directory=root_directory, dataset_name=dataset_name,test_case_number=test_case_number,nnvvppp_algoname=nnvvppp_algoname)
json_builder.make_generic(root_directory = root_directory,
                          dataset_name = dataset_name,
                          test_case_number = test_case_number,
                          nnvvppp_algoname = nnvvppp_algoname)

json_builder.make_thematic(root_directory,
                           dataset_name,
                           test_case_number,
                           nnvvppp_algoname,
                           thematic.compute_kmeans_score_for_multiband,
                           original_folder_path,
                           decompressed_folder_path,
                           satellite_type)

4 look at results

{
    "original_size": 525312,
    "compressed_size": 48637,
    "compression_factor": 10.8,
    "compression_time": 253,
    "decompression_time": 432,
    "compression_algorithm": "01-01-002_JPEG2000",
    "algorithm_version": "01",
    "compression_parameter": "002",
    "metrics": {
        "LPIPS": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 0.15013514459133148,
                "4c_256_256_random_band_2.tif": 0.1589806228876114,
                "4c_256_256_random_band_3.tif": 0.1509121209383011,
                "4c_256_256_random_band_4.tif": 0.1467234492301941
            },
            "average": 0.152,
            "stdev": 0.004
        },
        "SSIM": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 0.01048029893613139,
                "4c_256_256_random_band_2.tif": -0.0020971790915714186,
                "4c_256_256_random_band_3.tif": 0.007405245569149331,
                "4c_256_256_random_band_4.tif": 0.005087706587301147
            },
            "average": 0.005,
            "stdev": 0.005
        },
        "PSNR": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 7.801028498092282,
                "4c_256_256_random_band_2.tif": 7.75118324229439,
                "4c_256_256_random_band_3.tif": 7.785848197523122,
                "4c_256_256_random_band_4.tif": 7.762412297083275
            },
            "average": 7.775,
            "stdev": 0.019
        },
        "RMSE": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 26694.50541651717,
                "4c_256_256_random_band_2.tif": 26847.72648228625,
                "4c_256_256_random_band_3.tif": 26740.79206290665,
                "4c_256_256_random_band_4.tif": 26813.04036306841
            },
            "average": 26774.016,
            "stdev": 59.962
        }
    },
    "kmeans++S2-10-10-42": {
        "library": "scikit-learn",
        "version": "1.5.1",
        "date": "2024-09-11 17:18:17",
        "original bands": [
            "02",
            "03",
            "04",
            "05",
            "06",
            "07",
            "08",
            "11",
            "12"
        ],
        "resampled bands": [
          "05",
          "06",
          "07",
          "11",
          "12"
        ],
        "resampled_bands_factor": 2,
        "metrics": {
            "overall_accuracy": {
                "results": {
                    "S2A_MSIL1C_20200111T105421_N0208_R051_T29NNJ_20200111T123505.kmeans++-10-10-42.tif": 0.6520533690996381
                },
                "average": 0.652,
                "stdev": 0.0
            },
            "kappa_coefficient": {
                "results": {
                    "S2A_MSIL1C_20200111T105421_N0208_R051_T29NNJ_20200111T123505.kmeans++-10-10-42.tif": 0.5610928393084549
                },
                "average": 0.561,
                "stdev": 0.0
            }
        }
    }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file COPEX_high_rate_compression_quality_metrics-0.1.8.tar.gz.

File metadata

File hashes

Hashes for COPEX_high_rate_compression_quality_metrics-0.1.8.tar.gz
Algorithm Hash digest
SHA256 ecb9ad6bf9dadeed8068da79fbee83e0463f2bd82ea7bd541708610a4ab3f58a
MD5 af335325569871560c91d633e588123b
BLAKE2b-256 01dfc0b35bdcc712459c470618f241e9558851ed80719d2ced0cf730c58dd50b

See more details on using hashes here.

Provenance

File details

Details for the file COPEX_high_rate_compression_quality_metrics-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for COPEX_high_rate_compression_quality_metrics-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 11a005c468dbcb2aec9fdeb68e0ee37576f32542cb42a79f4006edd31ddd1369
MD5 e081f1ee9bc4222030c078094556b3fc
BLAKE2b-256 42192555ae8fd223fdee54dffad53ed5a7617b9161d76f306a524f421df5556d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page