Skip to main content

COPEX high rate compression quality metrics

Project description

COPEX High Rate Compression Quality Metrics

This package provides quality metrics for high rate compression.

Installation

pip install COPEX_high_rate_compression_quality_metrics

Library usage

Comparison of Two Multiband TIFF Images via LRSP (L:LPIPS, R:RMSE, S:SSIM, P:PSNR)

the following shows concrete example of use of the library

Steps:

  1. Import necessary libraries
  2. Initialize the model and specify the file paths
  3. Define preprocessing functions
  4. Load the TIFF files
  5. Calculate the metrics individually
  6. Json Builder

1 Library install / import

use "pip install COPEX-high-rate-compression-quality-metrics" to install the library

# Array handler
import numpy as np
# to have a json formated output
import json
import math
# File handler
from skimage import io

# File path handler
import os

# Metrics and utils
import COPEX_high_rate_compression_quality_metrics.metrics as COPEX_metrics
import COPEX_high_rate_compression_quality_metrics.utils as COPEX_utils

2 LPIPS initialization

# LPIPS initialization
loss_fn = COPEX_metrics.initialize_LPIPS()

3 File path definition

# Specify file paths here
file_path1 = os.path.join('T28PGV_20160318T111102_B04_20m.tif')
file_path2 = os.path.join('T28PGV_20160318T111102_B04_20m_ter.tif')

4 File loading

#load images and show shapes
image1 = io.imread(file_path1)
print(file_path1," [shape =",image1.shape,", min =",np.min(image1), ", max =",np.max(image1), ", dtype = ",image1.dtype,"]")
image2 = io.imread(file_path2)
print(file_path2," [shape =",image2.shape,", min =",np.min(image2), ", max =",np.max(image2), ", dtype = ",image2.dtype,"]")


# checking if images have the same shape
if image1.shape != image2.shape:
    raise ValueError("Les deux images doivent avoir les mêmes dimensions.")
print("images loaded with success.")

File visualization (optional)

COPEX_utils.display_multiband_tiffs(image1, image2)

png

5 metrics calculation

# Calculate all metrics
lpips_values,lpips_value = COPEX_metrics.calculate_lpips_multiband(image1, image2,loss_fn)
mean_ssim = COPEX_metrics.calculate_ssim_multiband(image1, image2)
psnr_value = COPEX_metrics.calculate_psnr(image1, image2)
rmse_value = COPEX_metrics.calculate_rmse(image1, image2)

Results interpretation

see VT-P382-SLD-003-E-01-00_COPEX_DCC_PM3_20230630.pdf for more informations about metrics weeknesses

LPIPS : (identical images) 0 <==========> 1 (completely different images) lower is better [very good LPIPS do not mean that images are not totaly different pixel wise]

RMSE : (identical images) 0 <==========> +inf (completely different images) lower is better [different kind of degradations can give the same score, do not capture blurring]

SSIM : (completely different images) -1 <==========> 1 (identical images) higher is better [sensible to little local distorions, sensible to noise differences]

PSNR : (completely different images) 0 <==========> +inf (identical images) higher is better [sensible to Big local differences]

data = {
    "files paths":{
        "file1":file_path1,
        "file2":file_path2
        },
    "metrics":{
        "LPIPS":lpips_value,
        "RMSE":rmse_value,
        "SSIM":mean_ssim,
        "PSNR":str(psnr_value) if math.isinf(psnr_value) else psnr_value     
    }
}
json_data = json.dumps(data, indent=4)

print(json_data)
    {
        "files paths": {
            "file1": "T28PGV_20160318T111102_B04_20m.tif",
            "file2": "T28PGV_20160318T111102_B04_20m_ter.tif"
        },
        "metrics": {
            "LPIPS": 0.038381848484277725,
            "RMSE": 192.01308995822703,
            "SSIM": 0.9817911582274915,
            "PSNR": 26.491058156522357
        }
    }

Json builder

auto_update the bensh algo json file automaticly

1 import library

import COPEX_high_rate_compression_quality_metrics.json_builder as json_builder
import COPEX_high_rate_compression_quality_metrics.metrics as metrics

2 define pathparameters

root_directory = "data"
dataset_name = "RANDOM"
test_case_number = 4
nnvvppp_algoname = "01-01-002_JPEG2000"

3 calculate generics/thematics in any order you want

#json_builder.initialize_json(root_directory=root_directory, dataset_name=dataset_name,test_case_number=test_case_number,nnvvppp_algoname=nnvvppp_algoname)
json_builder.make_generic(root_directory = root_directory,
                          dataset_name = dataset_name,
                          test_case_number = test_case_number,
                          nnvvppp_algoname = nnvvppp_algoname)

json_builder.make_thematic(root_directory,
                           dataset_name,
                           test_case_number,
                           nnvvppp_algoname,
                           thematic.compute_kmeans_score_for_multiband,
                           original_folder_path,
                           decompressed_folder_path,
                           satellite_type)

4 look at results

{
    "original_size": 525312,
    "compressed_size": 48637,
    "compression_factor": 10.8,
    "compression_time": 253,
    "decompression_time": 432,
    "compression_algorithm": "01-01-002_JPEG2000",
    "algorithm_version": "01",
    "compression_parameter": "002",
    "metrics": {
        "LPIPS": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 0.15013514459133148,
                "4c_256_256_random_band_2.tif": 0.1589806228876114,
                "4c_256_256_random_band_3.tif": 0.1509121209383011,
                "4c_256_256_random_band_4.tif": 0.1467234492301941
            },
            "average": 0.152,
            "stdev": 0.004
        },
        "SSIM": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 0.01048029893613139,
                "4c_256_256_random_band_2.tif": -0.0020971790915714186,
                "4c_256_256_random_band_3.tif": 0.007405245569149331,
                "4c_256_256_random_band_4.tif": 0.005087706587301147
            },
            "average": 0.005,
            "stdev": 0.005
        },
        "PSNR": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 7.801028498092282,
                "4c_256_256_random_band_2.tif": 7.75118324229439,
                "4c_256_256_random_band_3.tif": 7.785848197523122,
                "4c_256_256_random_band_4.tif": 7.762412297083275
            },
            "average": 7.775,
            "stdev": 0.019
        },
        "RMSE": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 26694.50541651717,
                "4c_256_256_random_band_2.tif": 26847.72648228625,
                "4c_256_256_random_band_3.tif": 26740.79206290665,
                "4c_256_256_random_band_4.tif": 26813.04036306841
            },
            "average": 26774.016,
            "stdev": 59.962
        }
    },
    "kmeans++S2-10-10-42": {
        "library": "scikit-learn",
        "version": "1.5.1",
        "date": "2024-09-11 17:18:17",
        "original bands": [
            "02",
            "03",
            "04",
            "05",
            "06",
            "07",
            "08",
            "11",
            "12"
        ],
        "resampled bands": [
          "05",
          "06",
          "07",
          "11",
          "12"
        ],
        "resampled_bands_factor": 2,
        "metrics": {
            "overall_accuracy": {
                "results": {
                    "S2A_MSIL1C_20200111T105421_N0208_R051_T29NNJ_20200111T123505.kmeans++-10-10-42.tif": 0.6520533690996381
                },
                "average": 0.652,
                "stdev": 0.0
            },
            "kappa_coefficient": {
                "results": {
                    "S2A_MSIL1C_20200111T105421_N0208_R051_T29NNJ_20200111T123505.kmeans++-10-10-42.tif": 0.5610928393084549
                },
                "average": 0.561,
                "stdev": 0.0
            }
        }
    }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file COPEX_high_rate_compression_quality_metrics-0.2.4.tar.gz.

File metadata

File hashes

Hashes for COPEX_high_rate_compression_quality_metrics-0.2.4.tar.gz
Algorithm Hash digest
SHA256 c9835f567d5c90b56617445e8311994e0fd59930f7d11916ffd58d1f27398d65
MD5 138c125657473a80209a31d5cfa09c7b
BLAKE2b-256 6e614b48bbff79c61b76d74fc8c836575b8757b66d7ef8f27610dbe052008ce9

See more details on using hashes here.

Provenance

File details

Details for the file COPEX_high_rate_compression_quality_metrics-0.2.4-py3-none-any.whl.

File metadata

File hashes

Hashes for COPEX_high_rate_compression_quality_metrics-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 e7611c0f41ad028d62de233dacb8de38781966cddb816a83d2aa12436e309db2
MD5 6561ac4ab04af52909ef371122ccb159
BLAKE2b-256 a82f234afedc60e0af4fba07e1dc74345d32270601449440b92dcc023f25c692

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page