Skip to main content

COPEX high rate compression quality metrics

Project description

COPEX High Rate Compression Quality Metrics

This package provides quality metrics for high rate compression.

Installation

pip install COPEX_high_rate_compression_quality_metrics

Library usage

Comparison of Two Multiband TIFF Images via LRSP (L:LPIPS, R:RMSE, S:SSIM, P:PSNR)

the following shows concrete example of use of the library

Steps:

  1. Import necessary libraries
  2. Initialize the model and specify the file paths
  3. Define preprocessing functions
  4. Load the TIFF files
  5. Calculate the metrics individually
  6. Json Builder

1 Library install / import

use "pip install COPEX-high-rate-compression-quality-metrics" to install the library

# Array handler
import numpy as np
# to have a json formated output
import json
import math
# File handler
from skimage import io

# File path handler
import os

# Metrics and utils
import COPEX_high_rate_compression_quality_metrics.metrics as COPEX_metrics
import COPEX_high_rate_compression_quality_metrics.utils as COPEX_utils

2 LPIPS initialization

# LPIPS initialization
loss_fn = COPEX_metrics.initialize_LPIPS()

3 File path definition

# Specify file paths here
file_path1 = os.path.join('T28PGV_20160318T111102_B04_20m.tif')
file_path2 = os.path.join('T28PGV_20160318T111102_B04_20m_ter.tif')

4 File loading

#load images and show shapes
image1 = io.imread(file_path1)
print(file_path1," [shape =",image1.shape,", min =",np.min(image1), ", max =",np.max(image1), ", dtype = ",image1.dtype,"]")
image2 = io.imread(file_path2)
print(file_path2," [shape =",image2.shape,", min =",np.min(image2), ", max =",np.max(image2), ", dtype = ",image2.dtype,"]")


# checking if images have the same shape
if image1.shape != image2.shape:
    raise ValueError("Les deux images doivent avoir les mêmes dimensions.")
print("images loaded with success.")

File visualization (optional)

COPEX_utils.display_multiband_tiffs(image1, image2)

png

5 metrics calculation

# Calculate all metrics
lpips_values,lpips_value = COPEX_metrics.calculate_lpips_multiband(image1, image2,loss_fn)
mean_ssim = COPEX_metrics.calculate_ssim_multiband(image1, image2)
psnr_value = COPEX_metrics.calculate_psnr(image1, image2)
rmse_value = COPEX_metrics.calculate_rmse(image1, image2)

Results interpretation

see VT-P382-SLD-003-E-01-00_COPEX_DCC_PM3_20230630.pdf for more informations about metrics weeknesses

LPIPS : (identical images) 0 <==========> 1 (completely different images) lower is better [very good LPIPS do not mean that images are not totaly different pixel wise]

RMSE : (identical images) 0 <==========> +inf (completely different images) lower is better [different kind of degradations can give the same score, do not capture blurring]

SSIM : (completely different images) -1 <==========> 1 (identical images) higher is better [sensible to little local distorions, sensible to noise differences]

PSNR : (completely different images) 0 <==========> +inf (identical images) higher is better [sensible to Big local differences]

data = {
    "files paths":{
        "file1":file_path1,
        "file2":file_path2
        },
    "metrics":{
        "LPIPS":lpips_value,
        "RMSE":rmse_value,
        "SSIM":mean_ssim,
        "PSNR":str(psnr_value) if math.isinf(psnr_value) else psnr_value     
    }
}
json_data = json.dumps(data, indent=4)

print(json_data)
    {
        "files paths": {
            "file1": "T28PGV_20160318T111102_B04_20m.tif",
            "file2": "T28PGV_20160318T111102_B04_20m_ter.tif"
        },
        "metrics": {
            "LPIPS": 0.038381848484277725,
            "RMSE": 192.01308995822703,
            "SSIM": 0.9817911582274915,
            "PSNR": 26.491058156522357
        }
    }

Json builder

auto_update the bensh algo json file automaticly

1 import library

import COPEX_high_rate_compression_quality_metrics.json_builder as json_builder
import COPEX_high_rate_compression_quality_metrics.metrics as metrics

2 define pathparameters

root_directory = "data"
dataset_name = "RANDOM"
test_case_number = 4
nnvvppp_algoname = "01-01-002_JPEG2000"

3 calculate generics/thematics in any order you want

#json_builder.initialize_json(root_directory=root_directory, dataset_name=dataset_name,test_case_number=test_case_number,nnvvppp_algoname=nnvvppp_algoname)
json_builder.make_generic(root_directory = root_directory,
                          dataset_name = dataset_name,
                          test_case_number = test_case_number,
                          nnvvppp_algoname = nnvvppp_algoname)

json_builder.make_thematic(root_directory,
                           dataset_name,
                           test_case_number,
                           nnvvppp_algoname,
                           thematic.compute_kmeans_score_for_multiband,
                           original_folder_path,
                           decompressed_folder_path,
                           satellite_type)

4 look at results

{
    "original_size": 525312,
    "compressed_size": 48637,
    "compression_factor": 10.8,
    "compression_time": 253,
    "decompression_time": 432,
    "compression_algorithm": "01-01-002_JPEG2000",
    "algorithm_version": "01",
    "compression_parameter": "002",
    "metrics": {
        "LPIPS": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 0.15013514459133148,
                "4c_256_256_random_band_2.tif": 0.1589806228876114,
                "4c_256_256_random_band_3.tif": 0.1509121209383011,
                "4c_256_256_random_band_4.tif": 0.1467234492301941
            },
            "average": 0.152,
            "stdev": 0.004
        },
        "SSIM": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 0.01048029893613139,
                "4c_256_256_random_band_2.tif": -0.0020971790915714186,
                "4c_256_256_random_band_3.tif": 0.007405245569149331,
                "4c_256_256_random_band_4.tif": 0.005087706587301147
            },
            "average": 0.005,
            "stdev": 0.005
        },
        "PSNR": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 7.801028498092282,
                "4c_256_256_random_band_2.tif": 7.75118324229439,
                "4c_256_256_random_band_3.tif": 7.785848197523122,
                "4c_256_256_random_band_4.tif": 7.762412297083275
            },
            "average": 7.775,
            "stdev": 0.019
        },
        "RMSE": {
            "library": "scikit-image",
            "version": "0.24.0",
            "date": "2024-08-19 16:53:07",
            "results": {
                "4c_256_256_random_band_1.tif": 26694.50541651717,
                "4c_256_256_random_band_2.tif": 26847.72648228625,
                "4c_256_256_random_band_3.tif": 26740.79206290665,
                "4c_256_256_random_band_4.tif": 26813.04036306841
            },
            "average": 26774.016,
            "stdev": 59.962
        }
    },
    "kmeans++S2-10-10-42": {
        "library": "scikit-learn",
        "version": "1.5.1",
        "date": "2024-09-11 17:18:17",
        "original bands": [
            "02",
            "03",
            "04",
            "05",
            "06",
            "07",
            "08",
            "11",
            "12"
        ],
        "resampled bands": [
          "05",
          "06",
          "07",
          "11",
          "12"
        ],
        "resampled_bands_factor": 2,
        "metrics": {
            "overall_accuracy": {
                "results": {
                    "S2A_MSIL1C_20200111T105421_N0208_R051_T29NNJ_20200111T123505.kmeans++-10-10-42.tif": 0.6520533690996381
                },
                "average": 0.652,
                "stdev": 0.0
            },
            "kappa_coefficient": {
                "results": {
                    "S2A_MSIL1C_20200111T105421_N0208_R051_T29NNJ_20200111T123505.kmeans++-10-10-42.tif": 0.5610928393084549
                },
                "average": 0.561,
                "stdev": 0.0
            }
        }
    }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file COPEX_high_rate_compression_quality_metrics-0.3.4.tar.gz.

File metadata

File hashes

Hashes for COPEX_high_rate_compression_quality_metrics-0.3.4.tar.gz
Algorithm Hash digest
SHA256 d7aa4a2a74a16f7485d9c9a5c3800dafc69ac9bc5ba2b85581aff6fccc61958e
MD5 70e5531fff6f61c4f7b339a8daa3e398
BLAKE2b-256 557123bde0adf8face05d2d4448f98934563feec5b77ae5b8059339585406c0c

See more details on using hashes here.

Provenance

File details

Details for the file COPEX_high_rate_compression_quality_metrics-0.3.4-py3-none-any.whl.

File metadata

File hashes

Hashes for COPEX_high_rate_compression_quality_metrics-0.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 31fa5956a7688d02dd19d78b18b45dbfa3447f9536dec6eb28cae0742cd017d7
MD5 379a07d55ebc5ce7ec0dc656b301c542
BLAKE2b-256 a2adb8cd951907fe9db167e18c2a0bd75d775e70b5e8273f911ef26807b7e46b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page