Skip to main content

A collection of useful util functions

Project description

Anomaly Detection and Explanation

We develop deep learning model that detects and explain anomaly in multivariate time series data.

Our model is based on Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR'22). We train and evaluate the model on DBSherlock dataset.

Anomaly Transformer

Anomaly transformer is a transformer-based model that detects anomaly in multivariate time series data. It is based on the assumption that the normal data is highly correlated, while the abnormal data is not. It uses a transformer encoder to learn the correlation between different time steps, and then uses a discriminator to distinguish the normal and abnormal data based on the learned correlation.

  • An inherent distinguishable criterion as Association Discrepancy for detection.
  • A new Anomaly-Attention mechanism to compute the association discrepancy.
  • A minimax strategy to amplify the normal-abnormal distinguishability of the association discrepancy.

For more details, please refer to the paper.

Environment Setup

Start docker container using docker compose, and login to the container

docker compose up -d

Install python packages

pip install -r requirements.txt

Prepare Dataset

Download

Download DBSherlock dataset.

python scripts/dataset/download_datasets.py

Append --download_all argument to download all datasets (i.e., SMD, SMAP, PSM, MSL, and DBSherlock).

python scripts/dataset/download_datasets.py --download_all

Preprocess data

Convert DBSherlock data (.mat file to .json file):

python src/data_factory/dbsherlock/convert.py \
    --input dataset/dbsherlock/tpcc_16w.mat \
    --out_dir dataset/dbsherlock/converted/ \
    --prefix tpcc_16w

python src/data_factory/dbsherlock/convert.py \
    --input dataset/dbsherlock/tpcc_500w.mat \
    --out_dir dataset/dbsherlock/converted/ \
    --prefix tpcc_500w

python src/data_factory/dbsherlock/convert.py \
    --input dataset/dbsherlock/tpce_3000.mat \
    --out_dir dataset/dbsherlock/converted/ \
    --prefix tpce_3000

Convert DBSherlock data into train & validate data for Anomaly Transformer:

python src/data_factory/dbsherlock/process.py \
    --input_path dataset/dbsherlock/converted/tpcc_16w_test.json \
    --output_path dataset/dbsherlock/processed/tpcc_16w/

python src/data_factory/dbsherlock/process.py \
    --input_path dataset/dbsherlock/converted/tpcc_500w_test.json \
    --output_path dataset/dbsherlock/processed/tpcc_500w/

python src/data_factory/dbsherlock/process.py \
    --input_path dataset/dbsherlock/converted/tpce_3000_test.json \
    --output_path dataset/dbsherlock/processed/tpce_3000/

Train and Evaluate

We provide the experiment scripts under the folder ./scripts. You can reproduce the experiment results with the below script:

bash ./scripts/experiment/DBS.sh

or you can run the below commands to train and evaluate the model step by step.

Training

Train the model on DBSherlock dataset:

python main.py \
    --dataset EDA \
    --dataset_path dataset/EDA/ \
    --mode train

Evaluating

Evaluate the trained model on the test split of the same dataset:

python main.py \
    --dataset EDA \
    --dataset_path dataset/EDA/ \
    --mode test 

Inference

Perform inference on time series data with the trained model:

python main.py \
    --dataset EDA \
    --dataset_path dataset/EDA/ \
    --mode infer
    --output_path results/EDA/

Reference

This respository is based on Anomaly Transformer.

@inproceedings{
xu2022anomaly,
title={Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy},
author={Jiehui Xu and Haixu Wu and Jianmin Wang and Mingsheng Long},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=LzQQ89U1qm_}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbanomtransformer-0.1.0.tar.gz (56.3 MB view details)

Uploaded Source

Built Distribution

dbanomtransformer-0.1.0-py3-none-any.whl (38.9 kB view details)

Uploaded Python 3

File details

Details for the file dbanomtransformer-0.1.0.tar.gz.

File metadata

  • Download URL: dbanomtransformer-0.1.0.tar.gz
  • Upload date:
  • Size: 56.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for dbanomtransformer-0.1.0.tar.gz
Algorithm Hash digest
SHA256 01bb94a3f8830d73efd5d69af5db343469ef4f6acec77e7fd77dafa0d86b87e6
MD5 a913995d2e0ee78d4ec06aed8f248748
BLAKE2b-256 747c35ab5f3f1402c21e16ca9c85d284efc964632fbe179ea3ad041002a4a552

See more details on using hashes here.

File details

Details for the file dbanomtransformer-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for dbanomtransformer-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 43677243f57d02fcfba79b8693106e7a15686f9d45292e9f5b98d1f52f54d550
MD5 3a153b7262cfb7bea6e5207c9dc86e6f
BLAKE2b-256 f2773a4eff16873a44702dfd02d94afba8d287cebca8cf44bd0346ce510ad0a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page