Skip to main content

A collection of useful util functions

Project description

Anomaly Detection and Explanation

We develop deep learning model that detects and explain anomaly in multivariate time series data.

Our model is based on Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR'22). We train and evaluate the model on DBSherlock dataset.

Anomaly Transformer

Anomaly transformer is a transformer-based model that detects anomaly in multivariate time series data. It is based on the assumption that the normal data is highly correlated, while the abnormal data is not. It uses a transformer encoder to learn the correlation between different time steps, and then uses a discriminator to distinguish the normal and abnormal data based on the learned correlation.

  • An inherent distinguishable criterion as Association Discrepancy for detection.
  • A new Anomaly-Attention mechanism to compute the association discrepancy.
  • A minimax strategy to amplify the normal-abnormal distinguishability of the association discrepancy.

For more details, please refer to the paper.

Environment Setup

Start docker container using docker compose, and login to the container

docker compose up -d

Install python packages

pip install -r requirements.txt

Prepare Dataset

Download

Download DBSherlock dataset.

python scripts/dataset/download_datasets.py

Append --download_all argument to download all datasets (i.e., SMD, SMAP, PSM, MSL, and DBSherlock).

python scripts/dataset/download_datasets.py --download_all

Preprocess data

Convert DBSherlock data (.mat file to .json file):

python src/DBAnomTransformer/data_factory/convert_dbsherlock.py \
    --input dataset/dbsherlock/tpcc_16w.mat \
    --out_dir dataset/dbsherlock/converted/ \
    --prefix tpcc_16w

python src/DBAnomTransformer/data_factory/convert_dbsherlock.py \
    --input dataset/dbsherlock/tpcc_500w.mat \
    --out_dir dataset/dbsherlock/converted/ \
    --prefix tpcc_500w

python src/DBAnomTransformer/data_factory/convert_dbsherlock.py \
    --input dataset/dbsherlock/tpce_3000.mat \
    --out_dir dataset/dbsherlock/converted/ \
    --prefix tpce_3000

Convert DBSherlock data into train & validate data for Anomaly Transformer:

python src/DBAnomTransformer/data_factory/process.py \
    --input_path dataset/dbsherlock/converted/tpcc_16w_test.json \
    --output_path dataset/dbsherlock/processed/tpcc_16w/

python src/DBAnomTransformer/data_factory/process.py \
    --input_path dataset/dbsherlock/converted/tpcc_500w_test.json \
    --output_path dataset/dbsherlock/processed/tpcc_500w/

python src/DBAnomTransformer/data_factory/process.py \
    --input_path dataset/dbsherlock/converted/tpce_3000_test.json \
    --output_path dataset/dbsherlock/processed/tpce_3000/

Reproducing Experiments

We provide the experiment scripts under the folder ./scripts. You can reproduce the experiment results with the below script:

bash ./scripts/experiment/DBS.sh

or you can run the below commands to train and evaluate the model step by step.

Training

Train the model on DBSherlock dataset:

python src/DBAnomTransformer/main.py \
    --dataset EDA \
    --dataset_path dataset/EDA/ \
    --mode train

Evaluating

Evaluate the trained model on the test split of the same dataset:

python src/DBAnomTransformer/main.py \
    --dataset EDA \
    --dataset_path dataset/EDA/ \
    --mode test 

Inference

Download the package through pip

pip install DBAnomTransformer

Load the trained model and use it to detect anomaly in new data. Below is an example of using the model to detect anomaly in dummy data (as DBS or EDA dataset).

import numpy as np
import pandas as pd
from omegaconf import OmegaConf

from DBAnomTransformer.config.utils import default_config
from DBAnomTransformer.detector import DBAnomDector

# dataset_name = "DBS"
dataset_name = "EDA"

# Create config
eda_config = default_config
dbsherlock_config = OmegaConf.create(
    {
        "model": {"num_anomaly_cause": 11, "num_feature": 200},
        "model_path": "checkpoints/DBS_checkpoint.pth",
        "scaler_path": "checkpoints/DBS_scaler.pkl",
        "stats_path": "checkpoints/DBS_stats.json",
    }
)


# Create dummy data
if dataset_name == "EDA":
    feature_num = 29
elif dataset_name == "DBS":
    feature_num = 200
dummy_data = np.random.rand(130, feature_num)
dummy_data = pd.DataFrame(dummy_data, columns=[f"attr_{i}" for i in range(feature_num)])


# Initialize and train model
if dataset_name == "EDA":
    detector = DBAnomDector()
    detector.train(dataset_path="dataset/EDA/")
elif dataset_name == "DBS":
    detector = DBAnomDector(override_config=dbsherlock_config)
    detector.train(
        dataset_path="dataset/dbsherlock/converted/tpcc_500w_test.json",
        dataset_name="DBS",
    )

# Run inference (detect anomaly)
anomaly_score, is_anomaly, anomaly_cause = detector.infer(data=dummy_data)

Note that the dataset folder should be organized as follows:

dataset
├── EDA
│   ├── meta_data
│   │   ├── db_backup.csv
│   │   ├── index.csv
│   │   ├── ...
│   │   └── workload_spike.csv
│   ├── raw_data
│   │   ├── db_backup_1.csv
│   │   ├── db_backup_2.csv
│   │   ├── ...
│   │   ├── workload_spike_1.csv
│   │   ├── workload_spike_2.csv
│   │   ├── ...

Reference

This respository is based on Anomaly Transformer.

@inproceedings{
xu2022anomaly,
title={Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy},
author={Jiehui Xu and Haixu Wu and Jianmin Wang and Mingsheng Long},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=LzQQ89U1qm_}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbanomtransformer-0.1.9.tar.gz (759.8 kB view details)

Uploaded Source

Built Distribution

dbanomtransformer-0.1.9-py3-none-any.whl (38.3 kB view details)

Uploaded Python 3

File details

Details for the file dbanomtransformer-0.1.9.tar.gz.

File metadata

  • Download URL: dbanomtransformer-0.1.9.tar.gz
  • Upload date:
  • Size: 759.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for dbanomtransformer-0.1.9.tar.gz
Algorithm Hash digest
SHA256 bed5b90c995acdcd93ea7608c3c902e50f648443760729f322a93e92a6ac9a34
MD5 0b9c94c1a8ca615177c6af31ebccb13a
BLAKE2b-256 d4daad18bb00d24a1040eea26a978cdea9be9a31ca6519a86b0fd00755855533

See more details on using hashes here.

File details

Details for the file dbanomtransformer-0.1.9-py3-none-any.whl.

File metadata

File hashes

Hashes for dbanomtransformer-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 21552ad6711a83a346c28eec8cd8ffd456e95c7a1ad3d58e3f9676896c359a67
MD5 c55053c460018158b7dc1c4787f35eaf
BLAKE2b-256 9a52d5b8be598b659b95b6fdc9d5151fe56bcff29009672fdcde76b5eda8a851

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page