Skip to main content

Lightweight data-centric framework for working with scientific data

Project description

DLite

A lightweight data-centric framework for semantic interoperability

PyPi CI tests Documentation DOI

DLite is a C implementation of the SINTEF Open Framework and Tools (SOFT), which is a set of concepts and tools for using data models (aka Metadata) to efficiently describe and work with scientific data.

DLite overview

The core of DLite is a framework for formalised representation of data described by data models (called Metadata or Entity in DLite). On top of this, DLite has a plugin system for various representations of the data in different formats and storages, as well as bindings to popular languages like Python, mappings to ontological concepts for enhanced semantics and a set of tools.

Documentation

The official documentation for DLite can be found on https://sintef.github.io/dlite/.

Installation

DLite is available on PyPI and can be installed with pip

pip install dlite-python[full]

The bracket [full] is optional, but ensures that you install all optional dependencies together with DLite. Without [full] you get a minimal DLite installation that only depends on NumPy. This would disable most storage plugins, except for the built-in "json", "bson" and "rdf" (when compiled against Redland librdf). For alternative installation methods, see the installation instructions.

Usage

All data in DLite is represented by a instance, which is described by a simple data model (aka Metadata). An Instance is identified by a unique UUID and have a set of named dimensions and properties. The dimensions are used to describe the shape of multi-dimensional properties.

DLite Metadata are identified by an URI and have an (optional) human readable description. Each dimension is given a name and description (optional) and each property is given a name, type, shape (optional), unit (optional) and description (optional). The shape of a property refers to the named dimensions. Foe example, a Metadata for a person serialised in YAML may look like:

uri: http://onto-ns.com/meta/0.1/Person
description: A person.
dimensions:
  nskills: Number of skills.
properties:
  name:
    type: string
    description: Full name.
  age:
    type: float32
    unit: year
    description: Age of person.
  skills:
    type: string
    shape: [nskills]
    description: List of skills.

Assume that you have file Person.yaml with this content. In Python, you can load this Metadata with

import dlite
Person = dlite.Instance.from_location("yaml", "Person.yaml", options="mode=r")

where the first argument is the "driver", i.e. the name of storage plugin to use for loading the Metadata. The options argument is optional. By providing "mode=r" you specify that the storage is opened in read-only mode.

You can verify that Person is a Metadata

>>> isinstance(Person, dlite.Metadata)
True

We can create an instance of Person with

holmes = Person(
    dimensions={"nskills": 4},
    properties={
      "name": "Sherlock Holmes",
      "skills": ["observing", "chemistry", "violin", "boxing"],
    }
)

The dimensions argument must be supplied when a Metadata is instantiated. It ensures that the shape of all properties are initialised consistently. The properties argument is optional. By specifying it, we initialise the properties to the provided values (otherwise, they will be initialised to zero).

In this case we didn't initialised the age

>>> holmes.age
0.0
>>> holmes.age = 34  # Assign the age

If you have Pint installed, you can also specify or access the age as a quantity with unit

>>> holmes.q.age = "34year"
>>> holmes.q.age
<Quantity(34, 'year')>
>>> holmes.q.age.to("century").m
0.34

We can view (a JSON representation of) the instance with

>>> print(holmes)
{
  "uuid": "314ac1ad-4a7e-477b-a56c-939121355112",
  "meta": "http://onto-ns.com/meta/0.1/Person",
  "dimensions": {
    "nskills": 4
  },
  "properties": {
    "Sherlock Holmes" {
      "age": 34.0,
      "skills": [
        "observing",
        "chemistry",
        "violin",
        "boxing"
      ]
    }
  }
}

The instance can also be stored using the save() method

holmes.save("yaml", "holmes.yaml", "mode=w")

which will produce the a YAML file with the following content

8cbd4c09-734d-4532-b35a-1e0dd5c3e8b5:
  meta: http://onto-ns.com/meta/0.1/Person
  dimensions:
    nskills: 4
  properties:
    Sherlock Holmes:
      age: 34.0
      skills:
      - observing
      - chemistry
      - violin
      - boxind

This was just a brief example. There is much more to DLite as will be revealed in the documentation.

License

DLite is licensed under the MIT license. However, it include a few third party source files with other permissive licenses. All of these should allow dynamic and static linking against open and propritary codes. A full list of included licenses can be found in LICENSES.txt.

Acknowledgment

In addition from internal funding from SINTEF and NTNU this work has been supported by several projects, including:

  • AMPERE (2015-2020) funded by Forskningsrådet and Norwegian industry partners.
  • FICAL (2015-2020) funded by Forskningsrådet and Norwegian industry partners.
  • Rational alloy design (ALLDESIGN) (2018-2022) NTNU internally funded project.
  • SFI Manufacturing (2015-2023) funded by Forskningsrådet and Norwegian industry partners.
  • SFI PhysMet (2020-2028) funded by Forskningsrådet and Norwegian industry partners.
  • OntoTrans (2020-2024) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 862136.
  • OpenModel (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 953167.
  • DOME 4.0 (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 953163.
  • VIPCOAT (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 952903.
  • MEDIATE (2022-2025) that receives funding from the RCN, Norway; FNR, Luxenburg; SMWK Germany via the M-era.net programme, project9557,
  • MatCHMaker (2022-2026) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 101091687.

DLite is developed with the hope that it will be a delight to work with.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dlite_python-0.5.21.tar.gz (16.2 kB view details)

Uploaded Source

Built Distributions

DLite_Python-0.5.21-cp312-cp312-win_amd64.whl (387.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

DLite_Python-0.5.21-cp312-cp312-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.21-cp311-cp311-win_amd64.whl (385.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

DLite_Python-0.5.21-cp311-cp311-musllinux_1_1_x86_64.whl (418.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.21-cp311-cp311-musllinux_1_1_i686.whl (412.6 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

DLite_Python-0.5.21-cp311-cp311-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.21-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

DLite_Python-0.5.21-cp310-cp310-win_amd64.whl (385.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

DLite_Python-0.5.21-cp310-cp310-musllinux_1_1_x86_64.whl (417.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.21-cp310-cp310-musllinux_1_1_i686.whl (411.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

DLite_Python-0.5.21-cp310-cp310-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.21-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

DLite_Python-0.5.21-cp39-cp39-win_amd64.whl (385.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

DLite_Python-0.5.21-cp39-cp39-musllinux_1_1_x86_64.whl (417.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.21-cp39-cp39-musllinux_1_1_i686.whl (411.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

DLite_Python-0.5.21-cp39-cp39-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.21-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

DLite_Python-0.5.21-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

DLite_Python-0.5.21-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

DLite_Python-0.5.21-cp38-cp38-win_amd64.whl (385.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

DLite_Python-0.5.21-cp38-cp38-musllinux_1_1_x86_64.whl (417.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.21-cp38-cp38-musllinux_1_1_i686.whl (411.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

DLite_Python-0.5.21-cp38-cp38-manylinux_2_28_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.21-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.21-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (15.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

DLite_Python-0.5.21-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

DLite_Python-0.5.21-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file dlite_python-0.5.21.tar.gz.

File metadata

  • Download URL: dlite_python-0.5.21.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for dlite_python-0.5.21.tar.gz
Algorithm Hash digest
SHA256 3689b1d867f8eac18dc9561e5ae370d9a1376d831c143bdfdf0c97659f8727bb
MD5 e2c3c9eafec028730e8e1ce29bd75d3d
BLAKE2b-256 659182250ce0560c5015d968292b0e4a53396b35fc8ff033d36b0531975adeaf

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 39a37a02b46290314920c3572e19476a090fa51d906425d69b2967add9fcedb5
MD5 b9248fce1471be925d605a7b14d7deae
BLAKE2b-256 1dcb0bc0f9a1c6aa97497c20e981b53eeb1acc70d94c82d2719f84d0e11b0967

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bd9731accf8c45a4c53ae324160d9bcae66fb79bf1af1187e84d7eb59d5e829c
MD5 936456b640286428338ffdbe48a5aa7b
BLAKE2b-256 20386a00537f4b96acfe20fb408dc8f119c7952f5503f8a28ae99ba5299c0c01

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d3f24d017d9502ba62f698f318cfb84568efa18c4e5315856ef3846a41337344
MD5 94a27c2971eb1fd3384aa915ff9e6adc
BLAKE2b-256 de56a4f84d1bce38d6b8bd84db7351d6e03a707f0ab7d5721795b854a68dbb70

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8ddab538ce611b7422d4d5cb298c896d2d37636a40bc1395250d5a6bfd6de9cc
MD5 abcddbe848d2d6460bfe1b9bafbb13eb
BLAKE2b-256 7b73dfed05653a9068524353857bf85ade85a74ddff95c73c3e8fd711657d35e

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fe3d50f279e5167f3e93a53952cb552064657890d7cf49452013314e98a5ae77
MD5 11a1c092e98179a378ab9e8f0e9bc597
BLAKE2b-256 dc71cedc136b3bab11202a5761b26630b9dade8f7985667b7b3dbe34b6cfe140

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b675fea8e26b064f783a936399c109bcedcfdf467f9088ff22843dd57f9f6606
MD5 c91d70abb7f3258ddb60548cc1f80d7d
BLAKE2b-256 95afde020a62d686b38c94394c4447f3b7605f80856d34bd172a67b4c471b802

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bb2a7571be127c63f2556f3533d5b2afb15bc804cc1e60c02d99551e5f916031
MD5 d8ac6ab67169336811bc30e4a1487d01
BLAKE2b-256 b4abbee458fbed049efe0e0457945caba7ccdbd8d5ce0cc7877df3fc359630d5

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bec9b9f8b8fc047fdf42bd943b51ac57673155424fcc340fea8c05bbf3be1baf
MD5 05ead963180da850e4441900637ea51c
BLAKE2b-256 f597e6f077d07a62afa7dd64865c10a2cb806b5ed68a530c7d1408ef5db75d7e

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 047caa70aa0ecb827e1d9d3fdd01b3986e1c18923deb8020adb727caff878f49
MD5 030eb76bce1afa6bbd0c1d80a7808f95
BLAKE2b-256 78ae744be4a949b0e54688e6c7e0d30fa72f58c5d2ef404dd56724c3b2f6eb7f

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4dc77e3152e7706af64f8b675b674bd6bf07934462aaa327f25f57b7b2ce9416
MD5 f1b43fc5023886c25613070d42a500d0
BLAKE2b-256 6446b8e5429a68661df308c0cdddcad099cbc3de238c333fd9beae5033f6590f

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 05bdefa79cdecee5ee116fe3d8620d68ee9e60654a8445e6d132be5d748240e3
MD5 b5622b527a6b2a0020b92cb691e901c1
BLAKE2b-256 e1c25f8382f4d58a98630d861e31b4254822a2abec77fb687fd40c84f9bca60f

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 95861c5457d0ebae192612720eac7584e1dc92098b731d9a278f34e4cf7906f8
MD5 37d2218a34c05efa9d43f18318ceb0fd
BLAKE2b-256 c7c129037242ffd4afeaf8db224d21c477a2202b758fecea48918034156c3eb6

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9418f76d402fc0f34691a018d0e472e07e83c66c9514f625f9592d7ce22e333e
MD5 1b3c7f5be800b0aa7812850011c3d5d4
BLAKE2b-256 920122c3dfbdec8a45fb6a5f9bc2e331ce9ba8de10b2c7cff73ed426a54bae2f

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 beeb826eee4e299894c15c4afeb596e9cf046fe7c46d57397ed9d5b224ec955d
MD5 6f6f6eb261f7c8b2e932a50686f4d3db
BLAKE2b-256 bb02cb2529f38aa6a109a69d319f4fd80bc32157c817253fea48ff8eb2a7a157

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5c646ef102ce9b53ce1f3ff6bafcc0ea51870c62be6689f4718e2d008d130053
MD5 8ffe5e02cacb3ba3378222accaf429d0
BLAKE2b-256 b3c4b913121e32b3c98228d7b621ed88ab12e7b8504083c4cfe19688abf4eec5

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 910981efad5587dc30e19d547758410af9c55d72c61b5456dd8659be3aa3d5de
MD5 f565bf2ee86e9f4ed8442b7c2ff83717
BLAKE2b-256 d415087e2111e0445e3fb8b39ee9272ad2bf70be45e288debd01f5258a907161

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 920b6fd440b3f6e8d39ae217a0834931156c3dbb1b46d6897aa4fa113845c08c
MD5 4e2d726f2cb0999139ff26ea032ae0ab
BLAKE2b-256 d31f3cca786711e02dc6fc861216733d17ab406f74e954c13c7343920df02950

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c427a529b8a426eb6c58b144d6063e820eef88f27d3af1170532343e8b575462
MD5 6f8d3f99f08279cdb92741ea75e023b7
BLAKE2b-256 44a089693c88b03170fe25cfd13d5c2ba4ec050406430ab79c60f20031f07c43

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 592f2a1c8be9c82cd1ee1fa8d1a0b966a58dcd848df3133702a7ec591a2881e6
MD5 2cd879266b75e39992baca5d5fb7dd82
BLAKE2b-256 5148f4eacf8326c8083d1efa563825a9ffe908f62404d09aacd3b880e6d329d9

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4210cc9fc879096b53f86ab0a8d9f5ad0b1af4cfca6c1b987f65c8f05de3cd6
MD5 a47434c5b5cec2d7b143340a3645f734
BLAKE2b-256 f4d90149466b10a0277a6bdb76ac32ceb03506fbcd8c549c41cfa4082ad0829e

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e67061ff9d76e2d61cb881c7dfb090b72ac65cd4eb0a5d2543d9a75b1be1a5dc
MD5 0ffd8c353a2f0068c91505983c0bc2b9
BLAKE2b-256 b000ef12542a243d02a8f10ebb917807e15c8fbcc73778b9483970683a78e600

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 db4291cac8ad7f97ec419efd5e3ea9e27f505876eda26be524fcc2061a5087aa
MD5 ab687ad557e9d59639c2107a9bb917df
BLAKE2b-256 b00a8c2aedbb59192d5446634894730544fb8f8f0f519379d4357e1509774ac6

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2ea5fd2093cef281cb30be86d1be9700b88f483531591bd3422e66db8f7f8274
MD5 e5949785ff68374bf6774570bcb15278
BLAKE2b-256 f354d8eeac4a79702aaacb6604b458abd5e649be2ee0a55534313c7ddbe990f1

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c1df6ec54c9e19e678319324a04d7550e3cb09582835430b868c804c07fa7d79
MD5 5ca3cadecef19496d9f855a0ca32a14b
BLAKE2b-256 e9944846676e4f78d550ec58b3e91724fc8267594c51237bc1f3ea9ae73ce11c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 93bf8e980e91d662c0f12fc410808ef711800778cf99fb3025bc662cfdc99f7b
MD5 e57705d97a402cc056aa1fbbee724112
BLAKE2b-256 660c75c997fb376c209a450094293e9bfb47d466911b92d560952519accbac11

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d496b6d1346a63d875a9188952cca2e1bf10c9b2b1cd0592cb957e5e095fd534
MD5 a203f4df2c5405902ab31bafb6406e62
BLAKE2b-256 c820d7ebca9fa33c904588139d63a941e99dd143ed9702839c5348b2b1634403

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b6bb0ef4d97143ba6346e17033f1ccf01d2a5538981ee2e984031a4015d8f011
MD5 ef75fe2b9d0e3fc78f62b3819fe57442
BLAKE2b-256 ab9da172cca15abc3921b1d17f1fb7d6d2866ed7b8ff574be93d6d9b4c519484

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb45a3aed2bbf50f4def6fbdb2c03a2e98494168ca64316ed46480c9c7efb5b0
MD5 d6f7f7ce16865feb73ab0ee4e0f9d3e8
BLAKE2b-256 3310a3348ea8507f7d8465ffa55905f683cd309067938e493669f99408a0a3c3

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 048187c751ddd77cda380153c108b67e8274e93c80607c8ff18607f756814ed0
MD5 1a5e143bd08b5ec91eddc530b3995877
BLAKE2b-256 7f2745cf3e1e861d559907fca1f11e774ef0eb783738f3f7f99ded6158f76b17

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a530d30995780a674445a27e2bb7b7cf7b789fd4216b245ebde933bba0402d88
MD5 597f9dba7a17e784cb0a75b4a11ff146
BLAKE2b-256 01382f58f79f4145901574ced8946d9e630dfa95d4b83c222a92ee4ea46d91ac

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.21-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.21-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8a6321b222016f02210372dd2fd7ea4f74ddc1b650cde9e5c730186f4cdea65e
MD5 b06b440a9ba2191448232d9c36beea66
BLAKE2b-256 43a10c6a3de398bb150645e2aeec7cf26731abf84e3a1d6e8a9917071d88a616

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page