Skip to main content

A package for estimating dynamic graphical lasso with heavy tailed distributions

Project description

Tests Coverage Status

DyGraph

A package for dynamic graph estimation.

pip install DyGraph

from sklearn.datasets import make_sparse_spd_matrix
import DyGraph as dg
import numpy as np
from scipy.stats import multivariate_t as mvt

Generate some data.

d = 5  # number of nodes
A = make_sparse_spd_matrix(d, alpha=0.6)
X = mvt.rvs(loc = np.zeros(d),df = 4, shape = np.linalg.inv(A), size=200)


max_iter = 100
obs_per_graph = 50
alpha = 0.05
kappa = 0.1
kappa_gamma = 0.1
tol = 1e-4

Gaussian

dg_opt = dg.dygl_inner_em(X,  obs_per_graph = obs_per_graph, max_iter = max_iter, lamda = alpha,  kappa = kappa, tol = tol, lik_type='gaussian')
dg_opt.fit(temporal_penalty = 'element-wise')

access the graphs via:

dg_opt.theta

t, inner and outer. Can give degrees of freedom, or estimate

# inner
dg_opt_t_inner = dg.dygl_inner_em(X = X, obs_per_graph = obs_per_graph,  max_iter = max_iter, lamda = alpha, kappa = kappa, tol = tol, lik_type='t')
dg_opt_t_inner.fit(temporal_penalty = 'element-wise')
# outer
dg_opt_t_outer = dg.dygl_outer_em(X = X, obs_per_graph = obs_per_graph,  max_iter = max_iter, lamda = alpha,  kappa = kappa, tol = tol, lik_type='t')
dg_opt_t_outer.fit(temporal_penalty = 'element-wise', nu = [4]*4)  # Note one nu/DoF for each graph.

Group t

# outer
dg_opt_gt_outer = dg.dygl_outer_em(X = X, obs_per_graph = obs_per_graph,  max_iter = max_iter, lamda = alpha,  kappa = kappa, tol = tol, lik_type='group-t')
dg_opt_gt_outer.fit(temporal_penalty = 'element-wise', nu = [[4] * d]*4, groups = [0]*d)  # Note one nu/DoF for each graph and feature/group, all features in same group

skew group t

# outer
dg_opt_sgt_outer = dg.dygl_outer_em(X = X, obs_per_graph = obs_per_graph,  max_iter = max_iter, lamda = alpha,  kappa = kappa, kappa_gamma = kappa_gamma, tol = tol, lik_type='skew-group-t')
dg_opt_sgt_outer.fit(temporal_penalty = 'element-wise', nu = None, groups = [0]*d)  # nus estimate, all features in same group

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DyGraph-0.0.4.tar.gz (17.9 kB view details)

Uploaded Source

Built Distribution

DyGraph-0.0.4-py3-none-any.whl (23.4 kB view details)

Uploaded Python 3

File details

Details for the file DyGraph-0.0.4.tar.gz.

File metadata

  • Download URL: DyGraph-0.0.4.tar.gz
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for DyGraph-0.0.4.tar.gz
Algorithm Hash digest
SHA256 e5c0a0bd4c4cac9b4a2070848b01e5fc523d48d19c03d547e053c3f78c9d3c49
MD5 9672bec447b92424dc1a23def7b2f421
BLAKE2b-256 7519ce9f4ac68befce6105a752da9ca6279e25f4ea143bb6d58b2094422eaab5

See more details on using hashes here.

File details

Details for the file DyGraph-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: DyGraph-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 23.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for DyGraph-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 358bb8e973922879beb257f60ddec7ce20a9465deac835c1465c7b1d0c2772b8
MD5 182a41aef9a22abe5faf76a25efedb23
BLAKE2b-256 4030b4c5ab57f30f9af4bbe9f2755f406f15f0c271849faae3b596127b1b147e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page