Skip to main content

Implementation of the Empirical Mode Decomposition (EMD) and its variations

Project description

codecov Build Status DocStatus Codacy Badge DOI

PyEMD

Links

Introduction

This is yet another Python implementation of Empirical Mode Decomposition (EMD). The package contains many EMD variations and intends to deliver more in time.

EMD variations

  • Ensemble EMD (EEMD),
  • "Complete Ensemble EMD" (CEEMDAN)
  • different settings and configurations of vanilla EMD.
  • Image decomposition (EMD2D & BEMD) (experimental, no support)

PyEMD allows to use different splines for envelopes, stopping criteria and extrema interpolation.

Available splines

  • Natural cubic (default)
  • Pointwise cubic
  • Akima
  • Linear

Available stopping criteria

  • Cauchy convergence (default)
  • Fixed number of iterations
  • Number of consecutive proto-imfs

Extrema detection

  • Discrete extrema (default)
  • Parabolic interpolation

Installation

PyPi (recommended)

The quickest way to install package is through pip.

$ pip install EMD-signal

From source

In case you only want to use EMD and its variation, the best way to install PyEMD is through pip. However, if you are want to modify the code anyhow you might want to download the code and build package yourself. The source is publicaly available and hosted on GitHub. To download the code you can either go to the source code page and click Code -> Download ZIP, or use git command line

$ git clone https://github.com/laszukdawid/PyEMD

Installing package from source is done using command line:

$ python setup.py install

Note, however, that this will install it in your current environment. If you are working on many projects, or sharing reources with others, we suggest using virtual environments.

Example

More detailed examples are included in the documentation or in the PyEMD/examples.

EMD

In most cases default settings are enough. Simply import EMD and pass your signal to instance or to emd() method.

from PyEMD import EMD
import numpy as np

s = np.random.random(100)
emd = EMD()
IMFs = emd(s)

The Figure below was produced with input: $S(t) = cos(22 \pi t^2) + 6t^2$

simpleExample

EEMD

Simplest case of using Ensemble EMD (EEMD) is by importing EEMD and passing your signal to the instance or eemd() method.

Windows: Please don't skip the if __name__ == "__main__" section.

from PyEMD import EEMD
import numpy as np

if __name__ == "__main__":
    s = np.random.random(100)
    eemd = EEMD()
    eIMFs = eemd(s)

CEEMDAN

As with previous methods, there is also simple way to use CEEMDAN.

Windows: Please don't skip the if __name__ == "__main__" section.

from PyEMD import CEEMDAN
import numpy as np

if __name__ == "__main__":
    s = np.random.random(100)
    ceemdan = CEEMDAN()
    cIMFs = ceemdan(s)

Visualisation

The package contain a simple visualisation helper that can help, e.g., with time series and instantaneous frequencies.

import numpy as np
from PyEMD import EMD, Visualisation

t = np.arange(0, 3, 0.01)
S = np.sin(13*t + 0.2*t**1.4) - np.cos(3*t)

# Extract imfs and residue
# In case of EMD
emd = EMD()
emd.emd(S)
imfs, res = emd.get_imfs_and_residue()

# In general:
#components = EEMD()(S)
#imfs, res = components[:-1], components[-1]

vis = Visualisation()
vis.plot_imfs(imfs=imfs, residue=res, t=t, include_residue=True)
vis.plot_instant_freq(t, imfs=imfs)
vis.show()

EMD2D/BEMD

Unfortunately, this is Experimental and we can't guarantee that the output is meaningful. The simplest use is to pass image as monochromatic numpy 2D array. Sample as with the other modules one can use the default setting of an instance or, more explicitly, use the emd2d() method.

from PyEMD.EMD2d import EMD2D  #, BEMD
import numpy as np

x, y = np.arange(128), np.arange(128).reshape((-1,1))
img = np.sin(0.1*x)*np.cos(0.2*y)
emd2d = EMD2D()  # BEMD() also works
IMFs_2D = emd2d(img)

F.A.Q

Why is EEMD/CEEMDAN so slow?

Unfortunately, that's their nature. They execute EMD multiple times every time with slightly modified version. Added noise can cause a creation of many extrema which will decrease performance of the natural cubic spline. For some tweaks on how to deal with that please see Speedup tricks in the documentation.

Contact

Feel free to contact me with any questions, requests or simply to say hi. It's always nice to know that I've helped someone or made their work easier. Contributing to the project is also acceptable and warmly welcomed.

Citation

If you found this package useful and would like to cite it in your work please use the following structure:

@misc{pyemd,
  author = {Laszuk, Dawid},
  title = {Python implementation of Empirical Mode Decomposition algorithm},
  year = {2017},
  publisher = {GitHub},
  journal = {GitHub Repository},
  howpublished = {\url{https://github.com/laszukdawid/PyEMD}},
  doi = {10.5281/zenodo.5459184}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EMD-signal-1.1.0.tar.gz (56.8 kB view details)

Uploaded Source

Built Distribution

EMD_signal-1.1.0-py2.py3-none-any.whl (22.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file EMD-signal-1.1.0.tar.gz.

File metadata

  • Download URL: EMD-signal-1.1.0.tar.gz
  • Upload date:
  • Size: 56.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for EMD-signal-1.1.0.tar.gz
Algorithm Hash digest
SHA256 41e0b0b87dd95de1ec806f271c62a19cc996f8f4b5a2978fd061016695cb7a9d
MD5 7d5d5ceeba6f72485c2bbb60a3170085
BLAKE2b-256 436d761dc87cd8e240349f1629f7aab04984d838276377d3d2a0a1743165a2ce

See more details on using hashes here.

File details

Details for the file EMD_signal-1.1.0-py2.py3-none-any.whl.

File metadata

  • Download URL: EMD_signal-1.1.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 22.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for EMD_signal-1.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 28c1a48a48645a611febd35747538c09f5c9d5c9c8d158ab66a688bbca306e5e
MD5 a4ce2c5c666b1be7d1ee6d79e358fa39
BLAKE2b-256 e78ffb569a59d5a3b9d104bdfea1f886b88f70ab699e8deb9fc76bfa92fd2bf2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page