Skip to main content

A Python package implementing TOPSIS for MCDM

Project description

Ekaspreet-topsis-102017078

Topsis in Python

Author: Ekaspreet 102017078
Maintainer: Ekaspreet ekaspreet0209@gmail.com.

TOPSIS: It is a for Multiple Criteria Decision Making,A Technique for Order Preference by Similarity to Ideal
More details at wikipedia.


In Command Prompt

>> topsis data.csv "1,1,1,1" "+,+,-,+" result.csv

Input file (data.csv)

Model Correlation R2 RMSE Accuracy
M1 0.79 0.62 1.25 60.89
M2 0.66 0.44 2.89 63.07
M3 0.56 0.31 1.57 62.87
M4 0.82 0.67 2.68 70.19
M5 0.75 0.56 1.3 80.39

Weights (weights) is not already normalised will be normalised later in the code.

Information of positive(+) or negative(-) impact criteria should be provided in impacts.


Output file (result.csv)

Model Correlation R2 RMSE Accuracy Score Rank
M1 0.79 0.62 1.25 60.89 0.7722 2
M2 0.66 0.44 2.89 63.07 0.2255 5
M3 0.56 0.31 1.57 62.87 0.4388 4
M4 0.82 0.67 2.68 70.19 0.5238 3
M5 0.75 0.56 1.3 80.39 0.8113 1

The output file contains columns of input file along with two additional columns having **Score** and **Rank**

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Ekaspreet-topsis-102017078-1.0.0.tar.gz (3.0 kB view details)

Uploaded Source

File details

Details for the file Ekaspreet-topsis-102017078-1.0.0.tar.gz.

File metadata

File hashes

Hashes for Ekaspreet-topsis-102017078-1.0.0.tar.gz
Algorithm Hash digest
SHA256 df93c7639005abe6e796baea574ae3aaa81da9e862b9bc0a5ef395bac18c3e42
MD5 f1e41204ae2c2a27a2c42afc1ed7cd9d
BLAKE2b-256 fda93dae7e7b36e3ff50c11077b7ade725a03aa53eed3ee5d478747ca4c89f70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page