Skip to main content

Vibration Fatigue by Spectral Methods.

Project description

FLife - Vibration Fatigue by Spectral Methods

Obtaining vibration fatigue life in the spectral domain.

Installing this package

Use pip to install it by:

$ pip install FLife

Supported methods in the frequency-domain

  • Narrowband,

  • Wirsching Light,

  • Ortiz Chen,

  • Alpha 0.75,

  • Tovo Benasciutti,

  • Dirlik,

  • Zhao Baker,

  • Park,

  • Jiao Moan,

  • Sakai Okamura,

  • Fu Cebon,

  • modified Fu Cebon,

  • Low,

  • Gao Moan,

  • Single moment,

  • Bands method

Rainflow (time-domain) is supported using the fatpack (four-points algorithm) and rainflow (three-points algorithm) packages.

Simple example

Here is a simple example on how to use the code:

import FLife
import numpy as np


dt = 1e-4
x = np.random.normal(scale=100, size=10000)

C = 1.8e+22  # S-N curve intercept [MPa**k]
k = 7.3 # S-N curve inverse slope [/]

# Spectral data
sd = FLife.SpectralData(input=(x, dt))

# Rainflow reference fatigue life
# (do not be confused here, spectral data object also holds the time domain data)
rf = FLife.Rainflow(sd)

# Spectral methods
dirlik = FLife.Dirlik(sd)
tb = FLife.TovoBenasciutti(sd)
print(f'          Rainflow: {rf.get_life(C = C, k=k):4.0f} s')
print(f'            Dirlik: {dirlik.get_life(C = C, k=k):4.0f} s')
print(f'Tovo Benasciutti 2: {tb.get_life(C = C, k=k, method="method 2"):4.0f} s')

SpectralData

SpectralData object contains data, required for fatigue-life estimation: power spectral density (PSD), spectral moments, spectral band estimators and others parameters.

SpectralData is instantiated with input parameter:

  • input = ‘GUI’ - PSD is provided by user via GUI (graphically and tabulary)

  • input = (PSD, freq) - tuple of PSD and frequency vector is provided.

  • input = (x, dt) - tuple of time history and sampling period is provided.

GUI

sd1 = FLife.SpectralData(input='GUI')
sd2 = FLife.SpectralData()

This is default argument. User is prompted to enter PSD graphically and/or tabulary.

GUI - PSD input

If parameter rg (numpy.random._generator.Generator) is provided, stationary Gaussian time-history is generated. Otherwise, time-history is generated subsequently, when Rainflow fatigue-life is calculated.

seed = 111
rg =  np.random.default_rng(seed)
sd3 = FLife.SpectralData(input='GUI', rg=rg)

time_history = sd3.data
# time-history duration and sampling period are dependent on frequency vector length and step
T = sd3.t # time-history duration
dt = sd3.dt # sampling period
time = np.arange(0, T, dt)
plt.plot(time, time_history)

(PSD, freq)

PSD and frequency arrays are given as input. Both arrays must be of type np.ndarray.

numpy.random._generator.Generator instance rg is optional parameter and controls phase of stationary Gaussian time_history.

seed = 111
rg =  np.random.default_rng(seed)
freq = np.array(0,1000, 0.01)
f_low, f_high = 100, 120
A = 1 # PSD value
PSD = np.interp(freq, [f_low, f_high], [A,A], left=0, right=0) # Flat-shaped one-sided PSD

sd4 = FLife.SpectralData(input = (PSD, freq))
sd5 = FLife.SpectralData(input = (PSD, freq), rg=rg)

time_history = sd5.data
# time-history duration and sampling period are dependent on frequency vector length and step
T = sd5.t # time-history duration
dt = sd5.dt # sampling period
time = np.arange(0, T, dt)
plt.plot(time, time_history)

(x, dt)

Time history x and sampling period dt are given as input. x must be of type np.ndarray and dt of type float, int.

dt = 1e-4
x = np.random.normal(scale=100, size=10000)

sd6 = FLife.SpectralData(input=(x, dt))

freq = sd6.psd[:,0]
PSD = sd6.psd[:,1]
plt.plot(freq, PSD)

Spectral Methods

Currently 16 spectral methods are supported. Methods for wideband process are organized into 3 subgroups:

  • Narrowband correction factor - methods are based on narrowband approximation, accounting for wideband procces with correction factor.

  • RFC PDF approximation - methods are based on approximation of Rainflow Probability Density Function.

  • PSD splitting - methods are based on splitting of PSD of wideband process into N narrowband approximations and accounting their interactions.

Spectral methods

SpectralData instance is prerequisite for spectral method instantiation. For multimodal spectral methods, PSD splitting type can be specified:

  • PSD_splitting=(‘equalAreaBands’, N) - PSD is divided into N equal area bands.

  • PSD_splitting=(‘userDefinedBands’, [f_1_ub, f_2_ub, …, f_i_ub, …, f_N_ub])) - Band upper boundary frequency f_i_ub is taken as boundary between two bands, i.e. i-th upper boundary frequency equals i+1-th lower boundary frequency.

nb = FLife.Narrowband(sd)
dirlik = FLife.Dirlik(sd)
tb = FLife.TovoBenasciutti(sd)
jm1 = FLife.JiaoMoan(sd)
jm2 = FLife.JiaoMoan(sd, PSD_splitting=('equalAreaBands', 2)) # same as jm1, PSD is divided in 2 bands with equal area
jm3 = FLife.JiaoMoan(sd, PSD_splitting=('userDefinedBands', [80,150])) #80 and 150 are bands upper limits [Hz]

PDF

Some spectral methods supports PDF stress cycle amplitude via get_PDF(s, **kwargs) function:

s = np.arange(0,np.max(x),.001)
plt.plot(s,nb.get_PDF(s), label='Narrowband')
plt.plot(s,dirlik.get_PDF(s), label='Dirlik')
plt.plot(s,tb.get_PDF(s, method='method 2'), label='Tovo-Benasciutti')
plt.legend()
plt.show()

Vibration-fatigue life

Vibration-fatigue life is returned by function get_life(C,k,**kwargs):

C = 1.8e+22  # S-N curve intercept [MPa**k]
k = 7.3 # S-N curve inverse slope [/]

life_nb = nb.get_life(C = C, k=k)
life_dirlik = dirlik.get_life(C = C, k=k)
life_tb = tb.get_life(C = C, k=k, method='method 1')

Rainflow

Vibration-fatigue life can be compared to rainflow method. When Rainflow class is instantiated, time-history is generated and assigned to SpectralData instance, if not already exist. By providing optional parameter rg (numpy.random._generator.Generator instance) phase of stationary Gaussian time history is controlled.

sd = FLife.SpectralData(input='GUI') # time history is not generated at this point

seed = 111
rg =  np.random.default_rng(seed)
rf1 = FLife.Rainflow(sd) # time history is generated and assigned to parameter SpectralData.data
rf2 = FLife.Rainflow(sd, rg=rg) # time history is generated and assigned to parameter SpectralData.data, signal phase is defined by random generator
rf_life_3pt = rf2.get_life(C, k, algorithm='three-point')
rf_life_4pt = rf2.get_life(C, k, algorithm='four-point', nr_load_classes=1024)

error_nb = FLife.tools.relative_error(life_nb, rf_life_3pt)
error_dirlik = FLife.tools.relative_error(life_dirlik, rf_life_3pt)
error_tb = FLife.tools.relative_error(life_tb, rf_life_3pt)

Reference: Janko Slavič, Matjaž Mršnik, Martin Česnik, Jaka Javh, Miha Boltežar. Vibration Fatigue by Spectral Methods, From Structural Dynamics to Fatigue Damage – Theory and Experiments, ISBN: 9780128221907, Elsevier, 1st September 2020, see Elsevier page.

Build Status

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

FLife-1.2.tar.gz (31.8 kB view hashes)

Uploaded Source

Built Distribution

FLife-1.2-py3-none-any.whl (61.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page