Skip to main content

A package for comparing two-sample of graphs

Project description

MMDGraph

What is this package for?

This package contains code to perform kernel two-sample hypothesis testing on samples of graphs. The code additionally allows for estimation of graphs from a real data matrix.

How to install

pip install GTST

Note that if one wants to use the WWL kernel then the pot package has to be installed via pip install pot .

Function Inputs

GTST.MMD is the main function used. If the user already has samples of graph where each sample is a list of networkx graph objects then the user can use fit to perform the hypothesis test

  • kernel: list, str, np.array. If str then one of kernels provided by the MMDGraph: RW_ARKU_plus, RW_ARKU, RW_ARKU_edge, RW_ARKL, GNTK, WWL, DK. If list then a GraKel kernel is used meaning the list should be formatted as one would do for the GraKel package. If np.array then a pre-calculated kernel is used.
  • mmd_estimators:str or list of strings, example MMD_u, MMD_b, MONK, MMD_l.

The fit method additionally takes in additional parameters that are used by the kernel functions or the bootstrap function, such as:

  • edge_attr: Edge attribute name, if any.
  • node_attr: Node attribute name, if any.
  • node_label: Node label name, if any.
  • edge_label: Edge label name, if any.
  • Q: int, number of partitions for the MONK estimator.
  • B: int, number of bootstraps for p-value estimation.
  • B: int, number of bootstraps for p-value estimation.

The RW kernels take:

  • r: int, number of eigenvalues.
  • c: float, discount constant.
  • normalize:bool, normalize kernel matrix?

The GNTK kernel takes:

  • num_layers: int, number of layers in the neural networks (including the input layer)
  • num_mlp_layers:int, number of MLP layers
  • jk: a bool variable indicating whether to add jumping knowledge
  • scale:str, the scale used aggregate neighbors [uniform, degree]
  • normalize:bool, normalize kernel matrix?

The WWL kernel uses:

  • discount: float, discount
  • h: int, number of WL iterations:
  • sinkhorn:bool, should the Wasserstein calculation be sped up and approxiamted?
  • sinkhorn_lambda: float, regularization term >0.

The DK kernel uses:

  • type: str, 'wl', 'sp'.
  • wl_it: int, number of WL iterations (only used if type = wl)
  • opt_type: str, if opt_type = 'word2vec' then a similarity matrix is estimated using gensim which needs to be installed, If None similarithy matrix is just the frequency.
  • vector_size: int, dimensionality of the word vectors. Only used if opt_type = 'word2vec'.
  • window: int, maximum distance between the current and predicted word within a sentence. Only used if opt_type = 'word2vec'.
  • min_count: int, Ignores all words with total frequency lower than this. Might have to be set to zero for the estimation to work. Only used if opt_type = 'word2vec'.
  • node_label: str, name of node lables.
  • workers: int, Use these many worker threads to train the model (=faster training with multicore machines). Only used if opt_type = 'word2vec'.
  • normalize: bool, normalize kernel?

If the user has data matrices that the used can use the estimate_graphs method to estimate graph samples using sklearn graphical lassom the inpur are:

  • X1,X2: two numpy arrays.
  • window_size: integer that controls how many samples are used to estimate each graph. That is window_size = 50, means that the first 50 samples are used to estimate the first graph, the next 50 graphs are used to estimate the second and so on. If the window size is not divisible by the total length of the data arrays then the remainder will be skipped.
  • alpha: float, Regularization parameters in a list or a single float. If list then EBIC will be used to select best graph.
  • beta: float. EBIC hyperparameter.
  • nonparanormal: bool, should data be nonparanormally transformed?
  • scale bool , should data be scaled?
  • set_attributes: function or None, set attribute of nodes. The function should take numpy array (which will be a submatrix of X1,X2) as input and output attributes for each node/parameter, used as an attribute for a graph kernel. See an example in usage below.
  • set_labels: function, str or None. If a function should take networkx graph as input and output labels for each node/parameter. Should return a dict {node_i:label,..}. If string = 'degree' then nodes will be labelled with degree. If None no labelling.

After the estimate_graphs procedure has been run then the user should run fit to perform the hypothesis test, but be sure to leave G1 = None and G2= None.

Usage

We will go thorugh multiple scenariros: The case when the user has it own networkx graphs, when they are estimated from data matricies, using different kernels and using different MMD estimators.

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import GTST

Fit when H1 true, different edge probability

In this example, we simulate binomial graphs assuming that samples two have different edge probabilties. There will be 50 graphs in each sample and the number of nodes is 30 for all graphs. Sample 1 has edge probabilty 0.3 and sample 2 has edge probability 0.4. We will label each node with its corresponding degree so that graph kernels that assume labels can be used.

Start by creating sample graphs

n1 = n2 = 50  # sample sizes
# generate two samples
g1 = [nx.fast_gnp_random_graph(30,0.3) for _ in range(n1)]
g2 = [nx.fast_gnp_random_graph(30,0.4) for _ in range(n2)]

# Set node labels as the degree
for j in range(len(g1)):
    nx.set_node_attributes(g1[j],  {key: str(value) for key, value in dict(g1[j].degree).items()} , 'label')
for j in range(len(g2)):
    nx.set_node_attributes(g2[j], {key: str(value) for key, value in dict(g2[j].degree).items()}, 'label')

Perform MMD test using various kernels. Note that the unbiases MMD estimator is used

# Random Walk, r is number of eigen-pairs, c is the discount constant
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1, G2 = g2, kernel = 'RW_ARKU_plus', mmd_estimators = 'MMD_u', r = 6, c = 0.001)  
print(f" RW_ARKU_plus {MMD_out.p_values}")
 RW_ARKU_plus {'MMD_u': 0.0}
# RW kernel with labels, Note that we input the label list (all node labels encountered in both graph samples)
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1, G2 = g2, kernel = 'RW_ARKL', mmd_estimators = 'MMD_u', r = 4, c = 1e-3,node_label = 'label',
                                    unique_node_labels= set(np.concatenate([list(nx.get_node_attributes(g, 'label').values())for g in g1+g2])))
print(f" RW_ARKL {MMD_out.p_values}")
Using label as node labels
 RW_ARKL {'MMD_u': 0.0}
# GNTK kernel,
# num_layers is number of layers in neural network,
# num_mlp_layers is number of multi-layer perceptron layeres
# jk indicate whether to add jumping knowledge
# scale how to aggregate neighbours uniform or degree.
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1, G2 = g2, kernel = 'GNTK', mmd_estimators = 'MMD_u', num_layers = 2, num_mlp_lauers = 2, jk = True, scale = 'uniform')
print(f" GNTK {MMD_out.p_values}")
100%|██████████| 5050/5050.0 [00:11<00:00, 438.12it/s]

 GNTK {'MMD_u': 0.0}
# WWL kernel
# discount is discount
# h is number of WL iterations
# node_label is name of node labels
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1, G2 = g2, kernel = 'WWL', mmd_estimators = 'MMD_u', discount = 0.1, h = 2, node_label = 'label')
print(f" WWL {MMD_out.p_values}")
Using label as node labels
 WWL {'MMD_u': 0.0}
# Deep Kernel without the deepness
# type is wl= wl closeness or sp: shortest path closeness
# wl_it is number of wl iterations, only applicable for wl.
# no deepness in this case only a frequency similarity
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1, G2 = g2, kernel = 'DK', mmd_estimators = 'MMD_u', type = 'wl', wl_it = 4, node_label = 'label')
print(f" ML DK {MMD_out.p_values}")
Using label as node labels
 ML DK {'MMD_u': 0.0}
# Deep kernel with deepness, user has to install gensim, this might take some time, can try to increase number of workers
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1, G2 = g2, kernel = 'DK', mmd_estimators = 'MMD_u', type = 'wl', wl_it = 4, opt_type = 'word2vec', node_label = 'label', workers = 10)
print(f" Deep DK {MMD_out.p_values}")
Using label as node labels
 Deep DK {'MMD_u': 0.0}
# It is also possible to use the Grakel library
kernel = [{"name": "weisfeiler_lehman", "n_iter": 1}, {"name": "vertex_histogram"}]
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1, G2 = g2, kernel = kernel, mmd_estimators = 'MMD_u', node_label = 'label')
print(f" WL {MMD_out.p_values}")
Using label as node labels
label
 WL {'MMD_u': 0.0}
# Grakel propagation
kernel = [ {"name":"propagation", 't_max':5, 'w':0.1, 'M':"TV"}]
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1, G2 = g2, kernel = kernel, mmd_estimators = 'MMD_u', node_label = 'label')
print(f" propagation {MMD_out.p_values}")
Using label as node labels
label
 propagation {'MMD_u': 0.0}

Using different MMD estimators

It is also pssobile to use other MMD estimators such as the biases, linear and robust.

# Q is the number of partitions in the MONK estimator

MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1, G2 = g2, kernel = 'RW_ARKU_plus', mmd_estimators = ['MMD_u', 'MMD_b', 'MMD_l', 'MONK_EST'], r = 2, c = 0.001, Q = 5)
print(f" RW_ARKU_plus {MMD_out.p_values}")
 RW_ARKU_plus {'MMD_u': 0.0, 'MMD_b': 0.0, 'MMD_l': 0.0, 'MONK_EST': 0.0}

H1 true, Graphs with different weights

It is possible to test graphs which are topologically the same but have different edge weights. Here there are 50 graphs in each sample and the number of nodes is 30 for all graphs. The edge probabilty is 0.3. We will label each node with its corresponding degree so that graph kernels that assume labels can be used.

n1 = n2 = 100
g1_weights = [nx.fast_gnp_random_graph(30,0.3) for _ in range(n1)]  # sample 1
g2_weights = [nx.fast_gnp_random_graph(30,0.3) for _ in range(n2)]  # sample 2

# For loops to label each node accoriding to its degree for the two samples.
for j in range(len(g1_weights)):
    nx.set_node_attributes(g1_weights[j],  {key: str(value) for key, value in dict(g1_weights[j].degree).items()} , 'label')
for j in range(len(g2_weights)):
    nx.set_node_attributes(g2_weights[j], {key: str(value) for key, value in dict(g2_weights[j].degree).items()}, 'label')


# For loops for the two samples and functions to generate random weights with uniform distribution
def edge_dist(loc, scale ):
    from scipy.stats import uniform
    return np.random.normal(loc = loc, scale = scale)# uniform.rvs(size=1,  loc = loc , scale = scale)[0]
def add_weight(G, loc, scale ):
    edge_w = dict()
    for e in G.edges():
        edge_w[e] = edge_dist(loc, scale)
    return edge_w


for G in g1_weights:
    nx.set_edge_attributes(G, add_weight(G, loc = 0.5, scale = 1), "weight")
for G in g2_weights:
    nx.set_edge_attributes(G, add_weight(G, loc = 0.5, scale = 2), "weight")
# Random Walk
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1_weights, G2 = g2_weights, kernel = 'RW_ARKU_plus', mmd_estimators = 'MMD_u', r = 2, c = 0.001, edge_attr = 'weight')
print(f" RW_ARKU_plus {MMD_out.p_values}")
Using weight as edge attributes
 RW_ARKU_plus {'MMD_u': 0.0}

Note that if we use a graph kernel that does not take edge weights into account, the test will not be rejected

# Random Walk weights ignored, should not reject
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1_weights, G2 = g2_weights, kernel = 'RW_ARKU_plus', mmd_estimators = 'MMD_u', r = 2, c = 0.001)
print(f" RW_ARKU_plus no labels {MMD_out.p_values}")
 RW_ARKU_plus no labels {'MMD_u': 0.462}
# Grakel pyramid match kernel
kernel = [{"name": "pyramid_match", "L": 6, "d":6, 'with_labels':False}]
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1_weights, G2 = g2_weights, kernel = kernel, mmd_estimators = 'MMD_u', edge_attr = 'weight')
print(f" pyramid_match {MMD_out.p_values}")
Using weight as edge attributes
None
 pyramid_match {'MMD_u': 0.0}
# propagation, needs node attribute or label 
kernel = [ {"name":"propagation", 't_max':5, 'w':0.05, 'M':"TV"}]
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1_weights, G2 = g2_weights, kernel = kernel, mmd_estimators = 'MMD_u', edge_attr = 'weight', node_label = 'label')
print(f" propagation {MMD_out.p_values}")
Using weight as edge attributes
Using label as node labels
label
 propagation {'MMD_u': 0.0}

H1 true different attributes

Some kernels can be used to compare graph with node attributes

n1 = n2 = 50
g1_attr = [nx.fast_gnp_random_graph(30,0.2) for _ in range(n1)]  # sample 1
g2_attr = [nx.fast_gnp_random_graph(30,0.2) for _ in range(n2)]  # sample 2
# For loop for the two samples to add node attributes for each graph which have different normal distributions
for j in range(len(g1_attr)):
    nx.set_node_attributes(g1_attr[j], dict( ( (i, np.random.normal(loc = 0, scale = 0.1, size = (1,))) for i in range(len(g1_attr[j])) ) ), 'attr')
for j in range(len(g2_attr)):
    nx.set_node_attributes(g2_attr[j], dict( ( (i, np.random.normal(loc = 0.1, scale = 0.1, size = (1,))) for i in range(len(g2_attr[j])) ) ), 'attr')
# Random Walk with weights and node attributes
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1_attr, G2 = g2_attr, kernel = 'RW_ARKU_plus', mmd_estimators = 'MMD_u', r = 4, c = 0.01, node_attr = 'attr')
print(f" RW_ARKU_plus {MMD_out.p_values}")
Using attr as node attributes
   

 RW_ARKU_plus {'MMD_u': 0.0}
# GNTK with node attributes
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1_attr, G2 = g2_attr, kernel = 'GNTK', mmd_estimators = 'MMD_u', num_layers = 2, num_mlp_lauers = 2, jk = True, scale = 'uniform', node_attr = 'attr')
print(f" GNTK {MMD_out.p_values}")
Using attr as node attributes


100%|██████████| 5050/5050.0 [00:04<00:00, 1246.33it/s]


 GNTK {'MMD_u': 0.0}
# Grakel propagation
kernel = [ {"name":"propagation", 't_max':5, 'w':0.1, 'M':"L1",'with_attributes':True}]
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1_attr, G2 = g2_attr, kernel = kernel, mmd_estimators = 'MMD_u', discount = 0.1, h = 2, node_attr = 'attr')
print(f" Propagation {MMD_out.p_values}")
Using attr as node attributes
attr
   

 Propagation {'MMD_u': 0.0}

Different edge labels

The RW kernel can take different edge labels

n1 = n2 = 50
g1_edge = [nx.fast_gnp_random_graph(30,0.3) for _ in range(n1)]  # sample 1
g2_edge = [nx.fast_gnp_random_graph(30,0.3) for _ in range(n2)]  # sample 2

# For loop to label each edge either 'a' or 'b' the labelling probabilities are different for the two samples
for j in range(len(g1_edge)):
    nx.set_edge_attributes(g1_edge[j], {(i,k):np.random.choice(['a','b'], p = [0.6,0.4]) for i,k in g1_edge[j].edges }, 'edge_label')
for j in range(len(g2_edge)):
    nx.set_edge_attributes(g2_edge[j], {(i,k):np.random.choice(['a','b'], p = [0.7,0.3]) for i,k in g2_edge[j].edges }, 'edge_label')
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1_edge, G2 = g2_edge, kernel = 'RW_ARKU_edge', mmd_estimators = 'MMD_u', r = 6, c = 0.0001,edge_label = 'edge_label',unique_edge_labels= ['a', 'b'])
print(f" RW_ARKU_edge {MMD_out.p_values}")
Using edge_label as edge labels
 RW_ARKU_edge {'MMD_u': 0.0}

Directed Graphs

The RW kernel can take directed graphs

n1 = n2 = 50
g1_di = [nx.fast_gnp_random_graph(30,0.2) for _ in range(n1)]  # sample 1
g2_di = [nx.fast_gnp_random_graph(30,0.2) for _ in range(n2)]  # sample 2

# for loop for both samples to convert the networkx graph to a networkx directed graph object
for j in range(len(g1_di)):
    g1_di[j] = nx.DiGraph(g1_di[j])
for j in range(len(g2_di)):
    g2_di[j] = nx.DiGraph(g2_di[j])

# for loop for both samples that removes edges with different removal probabilties between the two samples
for j in range(len(g1_di)):
    edges= list(g1_di[j].edges())
    for e,u in edges:
        if np.random.uniform() <0.3:
            g1_di[j].remove_edge(e,u)
for j in range(len(g2_di)):
    edges= list(g2_di[j].edges())
    for e,u in edges:
        if np.random.uniform() <0.5:
            g2_di[j].remove_edge(e,u)
MMD_out = GTST.MMD()
MMD_out.fit(G1 = g1_di, G2 = g2_di, kernel = 'RW_ARKU', mmd_estimators = 'MMD_u', r = 4, c = 1e-3)
print(f" RW_ARKU_edge {MMD_out.p_values}")
 RW_ARKU_edge {'MMD_u': 0.0}

Two data matrices different structure

It is possible to estimate graphs from data matrices

G = nx.fast_gnp_random_graph(11, 0.25, seed=42)  # generate a random graph
assert nx.is_connected(G)

#  Add random weights to the graphs, either positive or negative
for e in G.edges():
    if np.random.uniform() <0.1:
        w = np.random.uniform(low = 0.1, high = 0.3)
        G.edges[e[0], e[1]]['weight'] = -w
    else:
        w = np.random.uniform(low = 0.1, high = 0.3)
        G.edges[e[0], e[1]]['weight'] = w

# Extract adjacency matrix and fill the diagonal so that the resulting matrix will be positive definite.
A = np.array(nx.adjacency_matrix(G).todense())
np.fill_diagonal(A, np.sum(np.abs(A), axis = 1)+0.1)

# Copy the adjacency matrix, and remove some edges for that graph,  note the seed is assume to be 45 when G was constructed
A_s = A.copy()
A_s[7,4] = 0
A_s[4,7] = 0
A_s[5,2] = 0
A_s[2,5] = 0


# Simulate random variables one has A as its precision and one has A_s (the sparse copy of A) as its precision matrix.
# Note the precision matrix is the inverse covariance.
X1 = np.random.multivariate_normal(np.zeros(11),np.linalg.inv(A), size = 10000)
X2 = np.random.multivariate_normal(np.zeros(11),np.linalg.inv(A_s), size = 10000)

Input the two samples X1 and X2 to the class method estimate_graphs. Which estimates graphs according to a window size. The best estimation is selected via the EBIC criterion.

# window size = 200 so 10000/200 = 50 graphs in each sample. (200 observations used to estimate each graph.)
# Nonparanormal, should the nonparanormal transformation be performed on the data matrices.
# Scale should the data be scaled.
# Random Walk
MMD_out = GTST.MMD()
MMD_out.estimate_graphs(X1,X2,window_size=200, alpha = np.exp(np.linspace(-5,-2,100)),beta = 0.5, nonparanormal=False,scale = False)
MMD_out.fit( kernel = 'RW_ARKU_plus', mmd_estimators = 'MMD_u', r = 5, c = 0.1, edge_attr = 'weight')
print(MMD_out.p_values)
Using weight as edge attributes
   

{'MMD_u': 0.001}
# We can set node labels as degree (or define our own labelling, see below)
MMD_out = GTST.MMD()
kernel = [{"name": "weisfeiler_lehman", "n_iter": 4}, {"name": "vertex_histogram"}]
MMD_out.estimate_graphs(X1,X2,window_size=200, alpha = np.exp(np.linspace(-5,-2,100)),beta = 0.5, nonparanormal=False,scale = False, set_labels="degree")
MMD_out.fit( kernel = kernel, mmd_estimators = 'MMD_u',  edge_attr = 'weight')
print(MMD_out.p_values)
Using weight as edge attributes
Using label as node labels
label
{'MMD_u': 0.002}

Plot estimated estimated graphs and compare to the true.

np.fill_diagonal(A_s,0)
fig, ax = plt.subplots(2,2,figsize = (10,10))
pos = nx.kamada_kawai_layout(G, weight = None)
nx.draw(G, pos = pos, ax = ax[0,0])
nx.draw(nx.from_numpy_array(A_s), pos = pos, ax = ax[0,1])
nx.draw(MMD_out.G1[3], pos = pos, ax = ax[1,0])  # select graph number 3 in sample 1
nx.draw(MMD_out.G2[3], pos = pos, ax = ax[1,1])  # select graph number 3 in sample 2
ax[0,0].set_title("Sample 1 true precision structure")
ax[0,1].set_title("Sample 2 true precision structure")
ax[1,0].set_title("One estimated precision structure from sample 1")
ax[1,1].set_title("One estimated precision structure from sample 2")
Text(0.5, 1.0, 'One estimated precision structure from sample 2')

png

Two data matrices same structure different attributes

It is possible to estimate the graphs beforehand and apply a function to get node attributes

# Generate random samples that have the same underlying precision matrix/graph, but the node have different mean.

G = nx.fast_gnp_random_graph(11, 0.25, seed = 42)
assert nx.is_connected(G)

for e in G.edges():
    if np.random.uniform() <0.1:
        w = np.random.uniform(low = 0.1, high = 0.3)
        G.edges[e[0], e[1]]['weight'] = -w
    else:
        w = np.random.uniform(low = 0.1, high = 0.3)
        G.edges[e[0], e[1]]['weight'] = w

A = np.array(nx.adjacency_matrix(G).todense())
np.fill_diagonal(A, np.sum(np.abs(A), axis = 1)+0.1)


X1 = np.random.multivariate_normal(np.zeros(11),np.linalg.inv(A), size = 10000)
X2 = np.random.multivariate_normal(np.ones(11),np.linalg.inv(A), size = 10000)
# Random Walk, with attributes, should reject. , the class will use the node label name 'attr'
# Define attribute function that sets the mean as the node attribute. 
# Note the window size is 400 so there will be 400 observations that are used to estimate each graph/node attribute.
def attr_function(X):
    return np.expand_dims(np.mean(X,axis = 0),axis=1)

MMD_out = GTST.MMD()
MMD_out.estimate_graphs(X1,X2,window_size=400, alpha = np.exp(np.linspace(-5,-2,100)),beta = 0.5, nonparanormal=False,scale = False, set_attributes = attr_function)
MMD_out.fit( kernel = 'RW_ARKU_plus', mmd_estimators = 'MMD_u', r = 5, c = 0.1, edge_attr = 'weight', node_attr = 'attr')
print(MMD_out.p_values)
Using weight as edge attributes
Using attr as node attributes
    

{'MMD_u': 0.0}
# If we do not give attributes, the test should not be rejected reject as underlying the precision matrices are the same
MMD_out_no_attr = GTST.MMD()
MMD_out_no_attr.fit(G1= MMD_out.G1, G2 = MMD_out.G2, kernel = 'RW_ARKU_plus', mmd_estimators = 'MMD_u', r = 5, c = 0.1, edge_attr = 'weight')
print(MMD_out_no_attr.p_values)
Using weight as edge attributes
{'MMD_u': 0.993}
# We can also try to make a label function, has to be a dictionary, the class will use the node label name 'label'
# Note we label the nodes with the rounded mean
def label_function(X):
    m = np.mean(X,axis = 0)
    return {i:str(np.round(m[i],1)) for i in range(len(m))}

kernel = [{"name": "weisfeiler_lehman", "n_iter": 2}, {"name": "vertex_histogram"}]
MMD_out = GTST.MMD()
MMD_out.estimate_graphs(X1,X2,window_size=400, alpha = np.exp(np.linspace(-5,-2,100)),beta = 0.5, nonparanormal=False,scale = False, set_labels= label_function)
MMD_out.fit(kernel = kernel, mmd_estimators = 'MMD_u', node_label = 'label')
print(MMD_out.p_values)
Using label as node labels
label
{'MMD_u': 0.0}
# We can also define labels using a dict
# '1' for sample 1, '2' for sample 2. Graph nr. j gets the list ['a']*6 + ['b']*5
# meaning the first 6 nodes will be labelled 'a' and the last 5 nodes will be labelled 'b' for sample 1 but
# the first 4 nodes will be labelled 'a' and the last 7 nodes will be labelled 'b' for sample 2
label_dict = {'1':{j:i for j,i in enumerate(['a']*6 + ['b']*5)}, 
              '2':{j:i for j,i in enumerate(['a']*4 + ['b']*7)}}
kernel = [{"name": "weisfeiler_lehman", "n_iter": 2}, {"name": "vertex_histogram"}]
MMD_out = GTST.MMD()
MMD_out.estimate_graphs(X1,X2,window_size=400, alpha = np.exp(np.linspace(-5,-2,100)),beta = 0.5, nonparanormal=False,scale = False, set_labels= label_dict)
MMD_out.fit(kernel = kernel, mmd_estimators = 'MMD_u', node_label = 'label')
print(MMD_out.p_values)
Using label as node labels
label
{'MMD_u': 0.0}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gtst-0.0.4.tar.gz (536.8 kB view details)

Uploaded Source

Built Distribution

gtst-0.0.4-py3-none-any.whl (30.9 kB view details)

Uploaded Python 3

File details

Details for the file gtst-0.0.4.tar.gz.

File metadata

  • Download URL: gtst-0.0.4.tar.gz
  • Upload date:
  • Size: 536.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for gtst-0.0.4.tar.gz
Algorithm Hash digest
SHA256 f348bfeebcb25d288cec4bd4747e92ecf01d89e1e34da7f0c988be19d99cf6e8
MD5 5dba43045a15136766dfe89e960d72a1
BLAKE2b-256 047b9aa622b60049ca173b648411cf3d75f4c513d69b556c54b881268404c6b0

See more details on using hashes here.

File details

Details for the file gtst-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: gtst-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 30.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for gtst-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 8a2ca79d3477697a4007221844681e4e9b93dc896224057ef4249dffa9823f20
MD5 f3b15b9bc04baa961682e3e1be92b021
BLAKE2b-256 001f828044a337d5d385492561259105c378d72cfdf11c0615b090ac1a5c0fec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page