Skip to main content

HIFI-SE

Project description

HIFI-barcode-SE400

The BGISEQ-500 platform has launched a new test sequencing kits capable of single-end 400 bp sequencing (SE400), which offers a simple and reliable way to achieve DNA barcodes efficiently. In this study, we explored the potential of the BGISEQ-500 SE400 sequencing in DNA barcode reference construction, meanwhile provided an updated HIFI-Barcode software package that can generate COI barcode assemblies using HTS reads of length > 400 bp.

Versions

new release: 0.0.3 2018/11/15

Usage (latest==0.03)

HIFI-SE
usage: HIFI-SE [-h] {all,filter,assign,assembly,bold_identification} ...

Description

	An automatic pipeline for HIFI-SE400 project, including filtering raw reads,
	assigning reads to samples, assembly HIFI barcodes (COI sequences).

Version
	0.0.3 2018-11-15

Author
	yangchentao at genomics.cn, BGI.
	mengguanliang at genomics.cn, BGI.


positional arguments:
  {all,filter,assign,assembly,bold_identification}
    all                 run filter, assign and assembly
    filter              filter raw reads
    assign              assign reads to samples
    assembly            do assembly from input fastq reads,
                        output HIFI barcodes.
    bold_identification
                        do taxa identification on BOLD system,

optional arguments:
  -h, --help            show this help message and exit

run in "all"

Example:

HIFI-SE all -outpre hifi -raw test.raw.fastq -index 5 -primer index_primer.list -cid 0.98 -oid 0.95 -seqs_lim 50000 -threads 4 -tp 2

run by steps [filter -> assign -> assembly]

  • python3 HIFI-SE.py filter
usage: HIFI-SE filter [-h] -outpre <STR> -raw <STR> [-e <INT>]
                      [-q <INT> <INT>] [-n <INT>]

optional arguments:
  -h, --help      show this help message and exit

common arguments:
  -outpre <STR>   prefix for output files

filter arguments:
  -raw <STR>      input raw Single-End fastq file, and only adaptersshould be removed;
                  supposed on Phred33 score system (BGISEQ-500)
  -e <INT>        expected error threshod, default=10
                  see more: http://drive5.com/usearch/manual/exp_errs.html
  -q <INT> <INT>  filter by base quality; for example: '20 5' means
                  dropping read which contains more than 5 percent of
                  quality score < 20 bases.
  -n <INT>        remove reads containing [INT] Ns, default=1
  • python3 HIFI-SE.py assign
uusage: HIFI-SE assign [-h] -outpre <STR> -index INT -fq <STR> -primer <STR>
                      [-outdir <STR>]

optional arguments:
  -h, --help     show this help message and exit

common arguments:
  -outpre <STR>  prefix for output files

index arguments:
  -index INT     the length of tag sequence in the ends of primers

when only run assign arguments:
  -fq <STR>      cleaned fastq file

assign arguments:
  -primer <STR>  taged-primer list, on following format:
                 Rev001	AAGCTAAACTTCAGGGTGACCAAAAAATCA
                 For001	AAGCGGTCAACAAATCATAAAGATATTGG
                 ...
                 this format is necessary!
  -outdir <STR>  output directory for assignment, default="assigned"
  • python3 HIFI-SE.py assembly
usage: HIFI-SE assembly [-h] -outpre <STR> -index INT -list FILE
                        [-vsearch <STR>] [-threads <INT>] [-cid FLOAT]
                        [-min INT] [-max INT] [-oid FLOAT] [-tp INT] [-ab INT]
                        [-seqs_lim INT] [-len INT] [-mode INT] [-rc] [-cc]
                        [-codon INT] [-frame INT]

optional arguments:
  -h, --help      show this help message and exit

common arguments:
  -outpre <STR>   prefix for output files

index arguments:
  -index INT      the length of tag sequence in the ends of primers

when only run assembly arguments:
  -list FILE      input file, fastq file list. [required]

software path:
  -vsearch <STR>  vsearch path(only needed if vsearch is not in $PATH)
  -threads <INT>  threads for vsearch, default=2
  -cid FLOAT      identity for clustering, default=0.98

assembly arguments:
  -min INT        minimun length of overlap, default=80
  -max INT        maximum length of overlap, default=90
  -oid FLOAT      minimun similarity of overlap region, default=0.95
  -tp INT         how many clusters will be used in assembly, recommendation=2
  -ab INT         keep clusters to assembly if its abundance >=INT
  -seqs_lim INT   reads number limitation. by default, no limitation for input reads
  -len INT        standard read length, default=400
  -mode INT       1 or 2; modle 1 is to cluster and keep most [-tp] abundance clusters,
                  or clusters abundance more than [-ab], and then make a consensus
                  sequence for each cluster. modle 2 is directly to make only one
                  consensus sequence without clustering. default=1
  -rc             whether to check amino acid translation for reads, default not
  -cc             whether to check final COI contig's amino acid translation, default not
  -codon INT      codon usage table used to check translation, default=5
  -frame INT      start codon shift for amino acid translation, default=1

Github page

https://github.com/comery/HIFI-barcode-SE400

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

HIFI-SE-0.0.3.tar.gz (28.4 kB view details)

Uploaded Source

File details

Details for the file HIFI-SE-0.0.3.tar.gz.

File metadata

  • Download URL: HIFI-SE-0.0.3.tar.gz
  • Upload date:
  • Size: 28.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.4

File hashes

Hashes for HIFI-SE-0.0.3.tar.gz
Algorithm Hash digest
SHA256 81ec8fba8353800c0718041df4d52214f4baf52c5044ed3cadbf6661d8c1bada
MD5 a5e1fd526671fa70a08bd69f9494aaae
BLAKE2b-256 3209be9796b5463c59369d8d48ce90bf61385a2ee5ecb78e5caeb5933fbeac5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page