A handy toolkit for using LLM.
Project description
HandyLLM
A handy toolkit for using LLM.
🌟 Why HandyLLM?
☯️ Both sync and async APIs supported with unified design
🍡 OpenAI and Azure APIs all in one
☕️ Easy life with API endpoint management
📃 Writing chat prompt in a human-friendly mark-up format
Installation
pip3 install handyllm
or, install from the Github repo to get latest updates:
pip3 install git+https://github.com/atomiechen/handyllm.git
Usage
More example scripts are placed in tests folder.
Using OpenAIClient
Each API method of OpenAIClient
returns a Requestor
, and you can execute its call()
or acall()
to get synchronous or asynchronous API calls.
Synchronous API usage:
from handyllm import OpenAIClient
with OpenAIClient(api_key='<your-key>') as client:
response = client.chat(
model="gpt-4-turbo",
messages=[{"role": "user", "content": "please tell me a joke"}]
).call() ## note .call() here
print(response['choices'][0]['message']['content'])
Asynchronous API usage:
async with OpenAIClient('async', api_key='<your-key>') as client_async:
response = await client_async.chat(
model="gpt-4-turbo",
messages=[{"role": "user", "content": "please tell me a joke"}]
).acall() ## note .acall() here
print(response['choices'][0]['message']['content'])
You can instantiate a client that supports both modes:
client = OpenAIClient('sync') ## only supports sync APIs
client = OpenAIClient('async') ## only supports async APIs
client = OpenAIClient('both') ## supports both versions
Legacy: Using OpenAIAPI proxy
[!IMPORTANT] This is not recommended anymore. Use
OpenAIClient
instead.
Under the hood it connects to a module client and only provides synchronous APIs, without call()
.
from handyllm import OpenAIAPI
OpenAIAPI.api_key = '<your-key>'
response = OpenAIAPI.chat(
model="gpt-4-turbo",
messages=[{"role": "user", "content": "please tell me a joke"}]
) ## no .call() here
print(response['choices'][0]['message']['content'])
OpenAI API Request
Endpoints
Each API request will connect to an endpoint along with some API configurations, which include:
Description | Value | |
---|---|---|
api_type | API type. Defaults to openai . |
str: openai / azure |
api_base | API base url. Defaults to OpenAI base url. | str |
api_key | API key. | str |
organization | Organization. | str |
api_version | API version. Must be provided for Azure end-points. | str |
model_engine_map | Map model name to engine name. Useful for Azure end-points if you have custom model names. | dict |
An Endpoint
object contains these information. An EndpointManager
acts like a list and can be used to rotate the next endpoint. See test_endpoint.py.
Methods for configuring endpoint info (values will be inferred in top-town order):
Configuration method | Description |
---|---|
API keyword parameters | e.g.: chat(api_key='xxx', ...) |
API endpoint keyword parameter |
Providing an Endpoint , e.g.: chat(endpoint=MyEndpoint) |
API endpoint_manager keyword parameter |
Providing an EndpointManager , e.g.: chat(endpoint_manager=MyEndpointManager) |
OpenAIClient instance (or OpenAIAPI ) variables |
e.g.: client.api_key = 'xxx' / OpenAIAPI.api_key = 'xxx' |
Environment variables | OPENAI_API_KEY , OPENAI_ORGANIZATION /OPENAI_ORG_ID , OPENAI_API_BASE , OPENAI_API_TYPE , OPENAI_API_VERSION , MODEL_ENGINE_MAP . |
[!TIP]
Azure OpenAI APIs are supported: Specify
api_type='azure'
, and setapi_base
andapi_key
accordingly. Setmodel_engine_map
if you want to usemodel
parameter instead ofengine
/deployment_id
. See test_azure.py. Please refer to Azure OpenAI Service Documentation for details.
Logger
You can pass custom logger
and log_marks
(a string or a collection of strings) to chat
/completions
to get input and output logging.
Timeout control
This toolkit supports client-side timeout
control:
from handyllm import OpenAIClient
client = OpenAIClient()
prompt = [{
"role": "user",
"content": "please tell me a joke"
}]
response = client.chat(
model="gpt-3.5-turbo",
messages=prompt,
timeout=10
).call()
print(response['choices'][0]['message']['content'])
Stream response
Stream response of chat
/completions
/finetunes_list_events
can be achieved using steam
parameter:
from handyllm import OpenAIClient, stream_chat
client = OpenAIClient()
response = client.chat(
model="gpt-3.5-turbo",
messages=prompt,
timeout=10,
stream=True
).call()
# you can use this to stream the response text
for text in stream_chat(response):
print(text, end='')
# or you can use this to get the whole response
# for chunk in response:
# if 'content' in chunk['choices'][0]['delta']:
# print(chunk['choices'][0]['delta']['content'], end='')
Supported APIs
- chat
- completions
- edits
- embeddings
- models_list
- models_retrieve
- moderations
- images_generations
- images_edits
- images_variations
- audio_transcriptions
- audtio_translations
- files_list
- files_upload
- files_delete
- files_retrieve
- files_retrieve_content
- finetunes_create
- finetunes_list
- finetunes_retrieve
- finetunes_cancel
- finetunes_list_events
- finetunes_delete_model
Please refer to OpenAI official API reference for details.
Chat Prompt
Prompt Conversion
PromptConverter
can convert this text file prompt.txt
into a structured prompt for chat API calls:
$system$
You are a helpful assistant.
$user$
Please help me merge the following two JSON documents into one.
$assistant$
Sure, please give me the two JSON documents.
$user$
{
"item1": "It is really a good day."
}
{
"item2": "Indeed."
}
%output_format%
%misc1%
%misc2%
from handyllm import PromptConverter
converter = PromptConverter()
# chat can be used as the message parameter for OpenAI API
chat = converter.rawfile2chat('prompt.txt')
# variables wrapped in %s can be replaced at runtime
new_chat = converter.chat_replace_variables(
chat,
{
r'%misc1%': 'Note1: do not use any bad word.',
r'%misc2%': 'Note2: be optimistic.',
}
)
Substitute
PromptConverter
can also substitute placeholder variables like %output_format%
stored in text files to make multiple prompts modular. A substitute map substitute.txt
looks like this:
%output_format%
Please output a SINGLE JSON object that contains all items from the two input JSON objects.
%variable1%
Placeholder text.
%variable2%
Placeholder text.
from handyllm import PromptConverter
converter = PromptConverter()
converter.read_substitute_content('substitute.txt') # read substitute map
chat = converter.rawfile2chat('prompt.txt') # variables are substituted already
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.