Skip to main content

an open-sourced lightweight training framework aims to support model pre-training without the need for extensive dependencies

Project description

InternEvo

👋 join us on Discord and WeChat

Latest News 🔥

  • 2024/01/17: To delve deeper into the InternLM series of models, please check InternLM in our organization.

Introduction

InternEvo is an open-sourced lightweight training framework aims to support model pre-training without the need for extensive dependencies. With a single codebase, it supports pre-training on large-scale clusters with thousands of GPUs, and fine-tuning on a single GPU while achieving remarkable performance optimizations. InternEvo achieves nearly 90% acceleration efficiency during training on 1024 GPUs.

Based on the InternEvo training framework, we are continually releasing a variety of large language models, including the InternLM-7B series and InternLM-20B series, which significantly outperform numerous renowned open-source LLMs such as LLaMA and other leading models in the field.

Quick Start

Please refer to Usage Tutorial to start InternEvo installation, data processing, pre-training and fine-tuning.

For more details, please check internevo.readthedocs.io

System Architecture

Please refer to the System Architecture document for architecture details.

Performance

InternEvo deeply integrates Flash-Attention, Apex and other high-performance model operators to improve training efficiency. By building the Hybrid Zero technique, it achieves efficient overlap of computation and communication, significantly reducing cross-node communication traffic during training. InternEvo supports expanding the 7B model from 8 GPUs to 1024 GPUs, with an acceleration efficiency of up to 90% at the thousand-GPU scale, a training throughput of over 180 TFLOPS, and an average of over 3600 tokens per GPU per second. The following table shows InternEvo's scalability test data at different configurations:

GPU Number 8 16 32 64 128 256 512 1024
TGS 4078 3939 3919 3944 3928 3920 3835 3625
TFLOPS 193 191 188 188 187 185 186 184

TGS represents the average number of tokens processed per GPU per second. For more performance test data, please refer to the Training Performance document for further details.

Contribution

We appreciate all the contributors for their efforts to improve and enhance InternEvo. Community users are highly encouraged to participate in the project. Please refer to the contribution guidelines for instructions on how to contribute to the project.

Acknowledgements

InternEvo codebase is an open-source project contributed by Shanghai AI Laboratory and researchers from different universities and companies. We would like to thank all the contributors for their support in adding new features to the project and the users for providing valuable feedback. We hope that this toolkit and benchmark can provide the community with flexible and efficient code tools for fine-tuning InternEvo and developing their own models, thus continuously contributing to the open-source community. Special thanks to the two open-source projects, flash-attention and ColossalAI.

Citation

@misc{2023internlm,
    title={InternLM: A Multilingual Language Model with Progressively Enhanced Capabilities},
    author={InternLM Team},
    howpublished = {\url{https://github.com/InternLM/InternLM}},
    year={2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

InternEvo-0.5.2.tar.gz (223.8 kB view details)

Uploaded Source

Built Distribution

InternEvo-0.5.2-py3-none-any.whl (293.3 kB view details)

Uploaded Python 3

File details

Details for the file InternEvo-0.5.2.tar.gz.

File metadata

  • Download URL: InternEvo-0.5.2.tar.gz
  • Upload date:
  • Size: 223.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.4

File hashes

Hashes for InternEvo-0.5.2.tar.gz
Algorithm Hash digest
SHA256 aa0172583c25c5fef08683199230596860ad59e61c2b5690fe15dfb6526d2428
MD5 3878b3bbb59d0ea289ec536621b456a3
BLAKE2b-256 8803f65ec2955c83f9c28f8f0ccdbd04a2552ea4a615401578a7c681b0d57f0d

See more details on using hashes here.

File details

Details for the file InternEvo-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: InternEvo-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 293.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.4

File hashes

Hashes for InternEvo-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 dfb373b99905f42ac17ee9d2325cf6a179615cb736d3ccc557f5b9b308c741a9
MD5 23c0f125bda8949bea093204dc09f4df
BLAKE2b-256 8312c48b0f5be05b04d9f7302c6ccc98f9f32b78c99efccc5afedd6888717982

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page