🦜 Synthetic Voice Detection
Project description
Jabberjay
🦜 Synthetic Voice Detection
Models
Vision Transformer
Name | Model | Dataset | Visualisation | Model |
---|---|---|---|---|
MattyB95/VIT-ASVspoof2019-Mel_Spectrogram-Synthetic-Voice-Detection | VIT | ASVspoof2019 | MelSpectrogram | Hugging Face |
MattyB95/VIT-ASVspoof2019-ConstantQ-Synthetic-Voice-Detection | VIT | ASVspoof2019 | ConstantQ | Hugging Face |
MattyB95/VIT-ASVspoof2019-MFCC-Synthetic-Voice-Detection | VIT | ASVspoof2019 | MFCC | Hugging Face |
MattyB95/VIT-VoxCelebSpoof-Mel_Spectrogram-Synthetic-Voice-Detection | VIT | VoxCelebSpoof | MelSpectrogram | Hugging Face |
MattyB95/VIT-VoxCelebSpoof-ConstantQ-Synthetic-Voice-Detection | VIT | VoxCelebSpoof | ConstantQ | Hugging Face |
MattyB95/VIT-VoxCelebSpoof-MFCC-Synthetic-Voice-Detection | VIT | VoxCelebSpoof | MFCC | Hugging Face |
Audio Spectrogram Transformer
Name | Model | Dataset | Model |
---|---|---|---|
MattyB95/AST-ASVspoof2019-Synthetic-Voice-Detection | AST | ASVspoof2019 | Hugging Face |
MattyB95/AST-VoxCelebSpoof-Synthetic-Voice-Detection | AST | VoxCelebSpoof | Hugging Face |
Other
Name | Paper | Codebase | Model |
---|---|---|---|
Classical | Placeholder | Placeholder | Placeholder |
RawNet2 | End-to-End anti-spoofing with RawNet2 | rawnet2-antispoofing | pre_trained_DF_RawNet2.zip |
Usage
Command Line Interface
usage: Jabberjay [-h] [-m {AST,Classical,RawNet2,VIT}]
[-d {ASVspoof2019,VoxCelebSpoof}]
[-vis {ConstantQ,MelSpectrogram,MFCC}] [-v]
audio
Python API
from Jabberjay.Utilities.enum_handler import Visualisation, Model, Dataset
from Jabberjay.jabberjay import Jabberjay
jabberjay = Jabberjay()
bonafide = jabberjay.load(filename="../res/bonafide/bonafide.flac")
spoof = jabberjay.load(filename="../res/spoof/spoof.flac")
jabberjay.detect(audio=bonafide, model=Model.VIT, visualisation=Visualisation.ConstantQ, dataset=Dataset.VoxCelebSpoof)
jabberjay.detect(audio=spoof, model=Model.VIT, visualisation=Visualisation.ConstantQ, dataset=Dataset.VoxCelebSpoof)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
jabberjay-0.0.3.tar.gz
(203.6 kB
view details)
Built Distribution
jabberjay-0.0.3-py3-none-any.whl
(14.0 kB
view details)
File details
Details for the file jabberjay-0.0.3.tar.gz
.
File metadata
- Download URL: jabberjay-0.0.3.tar.gz
- Upload date:
- Size: 203.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2e07af224127f1e6e1c4b2c5821dcf2fc7ca4c92ea725dfefffcf5e75a64f84c |
|
MD5 | 9e9406ccbce5b727075a0ef658babfb3 |
|
BLAKE2b-256 | 110223fc370b078cb8e6b1a596b68995cd0c54e6576688e97e1454925008b013 |
File details
Details for the file jabberjay-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: jabberjay-0.0.3-py3-none-any.whl
- Upload date:
- Size: 14.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e1213e298b4b2ed86560ff6acd3dfb1a184854457a2bef4fe0ad41b1d679e6ce |
|
MD5 | ae534bf0b724808bff2152b6fefd5c39 |
|
BLAKE2b-256 | d37baae834a9338155b745c8aad04969ddb7fbc9e3ae2a0388552ca76318fcc6 |