Skip to main content

🦜 Synthetic Voice Detection

Project description

Jabberjay

🦜 Synthetic Voice Detection

Models

Vision Transformer

Name Model Dataset Visualisation Model
MattyB95/VIT-ASVspoof2019-Mel_Spectrogram-Synthetic-Voice-Detection VIT ASVspoof2019 MelSpectrogram Hugging Face
MattyB95/VIT-ASVspoof2019-ConstantQ-Synthetic-Voice-Detection VIT ASVspoof2019 ConstantQ Hugging Face
MattyB95/VIT-ASVspoof2019-MFCC-Synthetic-Voice-Detection VIT ASVspoof2019 MFCC Hugging Face
MattyB95/VIT-VoxCelebSpoof-Mel_Spectrogram-Synthetic-Voice-Detection VIT VoxCelebSpoof MelSpectrogram Hugging Face
MattyB95/VIT-VoxCelebSpoof-ConstantQ-Synthetic-Voice-Detection VIT VoxCelebSpoof ConstantQ Hugging Face
MattyB95/VIT-VoxCelebSpoof-MFCC-Synthetic-Voice-Detection VIT VoxCelebSpoof MFCC Hugging Face

Audio Spectrogram Transformer

Name Model Dataset Model
MattyB95/AST-ASVspoof2019-Synthetic-Voice-Detection AST ASVspoof2019 Hugging Face
MattyB95/AST-VoxCelebSpoof-Synthetic-Voice-Detection AST VoxCelebSpoof Hugging Face

Other

Name Paper Codebase Model
Classical Placeholder Placeholder Placeholder
RawNet2 End-to-End anti-spoofing with RawNet2 rawnet2-antispoofing pre_trained_DF_RawNet2.zip

Usage

Command Line Interface

usage: Jabberjay [-h] [-m {AST,Classical,RawNet2,VIT}]
                 [-d {ASVspoof2019,VoxCelebSpoof}]
                 [-vis {ConstantQ,MelSpectrogram,MFCC}] [-v]
                 audio

Python API

from Jabberjay.Utilities.enum_handler import Visualisation, Model, Dataset
from Jabberjay.jabberjay import Jabberjay

jabberjay = Jabberjay()

bonafide = jabberjay.load(filename="../res/bonafide/bonafide.flac")
spoof = jabberjay.load(filename="../res/spoof/spoof.flac")

jabberjay.detect(audio=bonafide, model=Model.VIT, visualisation=Visualisation.ConstantQ, dataset=Dataset.VoxCelebSpoof)
jabberjay.detect(audio=spoof, model=Model.VIT, visualisation=Visualisation.ConstantQ, dataset=Dataset.VoxCelebSpoof)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jabberjay-0.0.3.tar.gz (203.6 kB view details)

Uploaded Source

Built Distribution

jabberjay-0.0.3-py3-none-any.whl (14.0 kB view details)

Uploaded Python 3

File details

Details for the file jabberjay-0.0.3.tar.gz.

File metadata

  • Download URL: jabberjay-0.0.3.tar.gz
  • Upload date:
  • Size: 203.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for jabberjay-0.0.3.tar.gz
Algorithm Hash digest
SHA256 2e07af224127f1e6e1c4b2c5821dcf2fc7ca4c92ea725dfefffcf5e75a64f84c
MD5 9e9406ccbce5b727075a0ef658babfb3
BLAKE2b-256 110223fc370b078cb8e6b1a596b68995cd0c54e6576688e97e1454925008b013

See more details on using hashes here.

File details

Details for the file jabberjay-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: jabberjay-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 14.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for jabberjay-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e1213e298b4b2ed86560ff6acd3dfb1a184854457a2bef4fe0ad41b1d679e6ce
MD5 ae534bf0b724808bff2152b6fefd5c39
BLAKE2b-256 d37baae834a9338155b745c8aad04969ddb7fbc9e3ae2a0388552ca76318fcc6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page