A lightweight, packaged version of the Last Millennium Reanalysis (LMR) framework
Project description
LMR Turbo (LMRt)
A lightweight, packaged version of the Last Millennium Reanalysia (LMR) framework, inspired by LMR_lite.py originated by Professor Hakim (Univ. of Washington). Ultimately, it aims to provide following features:
- Greater flexibility
- Easy installation
- Easy importing and usage in Jupyter notebooks (or scripts)
- No assumption of a fixed folder structure; just feed the correct files to functions
- Easy setup for different priors, proxies, and Proxy System Models (PSMs) included in PRYSM API
- Faster speed
- Easy parallel computing with multiprocessing and other techniques
- Leveraging the power of Machine Learning (added in v0.6.0)
Results
Mean temperature
Niño 3.4 index
Package dependencies
- cartopy: a Python package designed for geospatial data processing in order to produce maps and other geospatial data analyses (
conda install -c conda-forge cartopy
). - pyspharm: an object-oriented python interface to the NCAR SPHEREPACK library (
conda install -c conda-forge pyspharm
). - tqdm: A fast, extensible progress bar for Python and CLI (
pip install tqdm
). - prysm-api: The API for PRoxY System Modeling (PRYSM) (
pip install prysm-api
). - dotmap: Dot access dictionary with dynamic hierarchy creation and ordered iteration (
pip install dotmap
). - xarray: N-D labeled arrays and datasets in Python (
pip install xarray
). - netCDF4: the python interface for netCDF4 format (
pip install netCDF4
). - nitime: Timeseries analysis for neuroscience data (
pip install nitime
). - statsmodels: Statistical models, hypothesis tests, and data exploration (
pip install statsmodels
). - pyyaml: The next generation YAML parser and emitter for Python (
pip install pyyaml
). - seaborn: Statistical data visualization using matplotlib (
pip install seaborn
). - scikit-learn: Machine Learning in Python (
pip install -U scikit-learn
). - keras: Deep Learning for humans (
pip install keras
). - tensorflow: An Open Source Machine Learning Framework for Everyone (
pip install tensorflow
orpip install tensorflow-gpu
).
How to install
Taking a clean install as example, first let's create a new environment named LMRt
via conda
conda create -n LMRt python=3.7
conda activate LMRt
Then install two dependencies that is not able to be installed via pip
:
conda install -c conda-forge cartopy pyspharm
Once the above dependencies have been installed, simply
pip install LMRt
and you are ready to
import LMRt
in python.
Notebook tutorials
References
- Hakim, G. J., J. Emile‐Geay, E. J. Steig, D. Noone, D. M. Anderson, R. Tardif, N. Steiger, and W. A. Perkins, 2016: The last millennium climate reanalysis project: Framework and first results. Journal of Geophysical Research: Atmospheres, 121, 6745–6764, https://doi.org/10.1002/2016JD024751.
- Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling, Clim. Past Discuss., https://doi.org/10.5194/cp-2018-120, in review, 2018.
License
BSD License (see the details here)
How to cite
If you find this package useful, please cite it with DOI:
... and welcome to Star and Fork!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file LMRt-0.6.8.tar.gz
.
File metadata
- Download URL: LMRt-0.6.8.tar.gz
- Upload date:
- Size: 2.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4a1e518c550f375daac8ad3dd7f7fe2e1d237f57bf68d6b6f1fefb1395a28eb |
|
MD5 | 980d1a408ce36cd98bb921153b48ae6d |
|
BLAKE2b-256 | d171bd9589fbac720a1bab39e4561a456e318b88b92f486885533731c9ba2198 |