Skip to main content

A lightweight, packaged version of the Last Millennium Reanalysis (LMR) framework

Project description

PyPI DOI

LMR Turbo (LMRt)

A lightweight, packaged version of the Last Millennium Reanalysia (LMR) framework, inspired by LMR_lite.py originated by Professor Hakim (Univ. of Washington). Ultimately, it aims to provide following features:

  • Greater flexibility
    • Easy installation
    • Easy importing and usage in Jupyter notebooks (or scripts)
    • No assumption of a fixed folder structure; just feed the correct files to functions
    • Easy setup for different priors, proxies, and Proxy System Models (PSMs) included in PRYSM API
  • Faster speed
    • Easy parallel computing with multiprocessing and other techniques
  • Leveraging the power of Machine Learning (added in v0.6.0)

Results

Mean temperature

Mean temperature

Niño 3.4 index

Niño 3.4

Package dependencies

  • cartopy: a Python package designed for geospatial data processing in order to produce maps and other geospatial data analyses (conda install -c conda-forge cartopy).
  • pyspharm: an object-oriented python interface to the NCAR SPHEREPACK library (conda install -c conda-forge pyspharm).
  • tqdm: A fast, extensible progress bar for Python and CLI (pip install tqdm).
  • prysm-api: The API for PRoxY System Modeling (PRYSM) (pip install prysm-api).
  • dotmap: Dot access dictionary with dynamic hierarchy creation and ordered iteration (pip install dotmap).
  • xarray: N-D labeled arrays and datasets in Python (pip install xarray).
  • netCDF4: the python interface for netCDF4 format (pip install netCDF4).
  • nitime: Timeseries analysis for neuroscience data (pip install nitime).
  • statsmodels: Statistical models, hypothesis tests, and data exploration (pip install statsmodels).
  • pyyaml: The next generation YAML parser and emitter for Python (pip install pyyaml).
  • seaborn: Statistical data visualization using matplotlib (pip install seaborn).
  • scikit-learn: Machine Learning in Python (pip install -U scikit-learn).
  • keras: Deep Learning for humans (pip install keras).
  • tensorflow: An Open Source Machine Learning Framework for Everyone (pip install tensorflow or pip install tensorflow-gpu).

How to install

Taking a clean install as example, first let's create a new environment named LMRt via conda

conda create -n LMRt python=3.7
conda activate LMRt

Then install two dependencies that is not able to be installed via pip:

conda install -c conda-forge cartopy pyspharm

Once the above dependencies have been installed, simply

pip install LMRt

and you are ready to

import LMRt

in python.

Notebook tutorials

References

  • Hakim, G. J., J. Emile‐Geay, E. J. Steig, D. Noone, D. M. Anderson, R. Tardif, N. Steiger, and W. A. Perkins, 2016: The last millennium climate reanalysis project: Framework and first results. Journal of Geophysical Research: Atmospheres, 121, 6745–6764, https://doi.org/10.1002/2016JD024751.
  • Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling, Clim. Past Discuss., https://doi.org/10.5194/cp-2018-120, in review, 2018.

License

BSD License (see the details here)

How to cite

If you find this package useful, please cite it with DOI: DOI

... and welcome to Star and Fork!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LMRt-0.6.8.tar.gz (2.9 MB view details)

Uploaded Source

File details

Details for the file LMRt-0.6.8.tar.gz.

File metadata

  • Download URL: LMRt-0.6.8.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.7

File hashes

Hashes for LMRt-0.6.8.tar.gz
Algorithm Hash digest
SHA256 b4a1e518c550f375daac8ad3dd7f7fe2e1d237f57bf68d6b6f1fefb1395a28eb
MD5 980d1a408ce36cd98bb921153b48ae6d
BLAKE2b-256 d171bd9589fbac720a1bab39e4561a456e318b88b92f486885533731c9ba2198

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page