Skip to main content

Lab_3419 is a cross-platform python library

Project description

Lab 3419

Lab_3419 is a cross-platform python library. It contains some useful function for MST simulation

Installation

pip install Lab_3419

Dependencies

Lab_3419 supports Python 3.6 and later. If you are installing Lab_3419 from PyPI using pip: please install numpy before installing Lab_3419.

Example Usage

Import Lab_3419 module

    >>> import Lab_3419 as lb

Some important data format

1. A point in 3D Space --> point = (x, y, z)
2. Line points in 3D Space --> points = numpy.array([(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), ...])
3. A fitted Line in 3D Space --> fitted_line = numpy.array([(x1, y1, z1), (x2, y2, z2)])

Fit 3D line

    >>> simulated_points = numpy.array([(x1, y1, z1), (x2, y2, z2), (x3, y3, z3)])
    >>> points = lb.add_resolusion(points_=simulated_points, res_=position_resolution)
    >>> fitted_line = lb.fit_3D(points)

Find POCA point

    >>> poca_xyz, deviation = lb.POCA_Point(fitted_line_1, fitted_line_)

Find POCA point directly from data string

    >>> data_string = "x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6"
    >>> poca_x, poca_y, poca_z, deviation = lb.calculate(data_string)

Find POCA points directly from data file

A file contains multiple number of data string.

Example data file: data_file.txt

-279.717 270.73 -391 -233.76 277.098 -321 -187.807 283.464 -251 140.424 328.94 249 186.895 335.379 319.776 232.346 341.674 389
42.0465 62.3473 -391 28.2942 59.1205 -321 14.5489 55.8892 -251 -83.7591 32.7117 249.426 -97.4228 29.4739 319 -111.175 26.2129 389
138.413 682.409 -391 134.046 628.646 -321 129.676 574.895 -251 98.4977 190.939 249 94.075 136.334 320.099 89.7752 83.4056 389
174.57 -20.909 -391 149.972 -1.86935 -321 125.373 17.1698 -251 -50.315 153.155 249 -74.9115 172.191 319 -99.567 191.274 389

Example code

    >>> all_poca_points = lb.file_to_poca("data_file.txt", is_save=False)
    # To write into new file use "is_save = True". 
    # This will create a file "data_file_poca_points.txt"
    >>> lb.file_to_poca("data_file.txt", is_save=True)
    # Same function with multi-threaded mode
    >>> all_poca_points = lb.file_to_poca_mt("data_file.txt", is_save=False)
    >>> lb.file_to_poca_mt("data_file.txt", is_save=True)

Filter POCA points according to their deviation angle

Example poca file: data_file.txt

-320.1396 -187.6816 -157.1030 1.0040
351.6875 -307.2162 -125.7960 0.0117
288.7207 349.4853 474.8601 3.0034
-41.1887 42.8014 32.7391 0.0243
    >>> filter_poca_points = lb.filter_poca_data(poca_data_array, minimum_theta)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

Lab_3419-1.0.0-py3-none-any.whl (5.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page