Skip to main content

C methods for MNN Package

Project description

This is a python package for MNN

Installation

pip install -U MNN

Dependencies

flatbuffers, numpy

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

MNN-3.0.0-cp312-cp312-win_amd64.whl (40.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

MNN-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

MNN-3.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

MNN-3.0.0-cp312-cp312-macosx_11_0_arm64.whl (3.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

MNN-3.0.0-cp312-cp312-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

MNN-3.0.0-cp311-cp311-win_amd64.whl (40.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

MNN-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

MNN-3.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

MNN-3.0.0-cp311-cp311-macosx_11_0_arm64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

MNN-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

MNN-3.0.0-cp310-cp310-win_amd64.whl (40.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

MNN-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

MNN-3.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

MNN-3.0.0-cp310-cp310-macosx_11_0_arm64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

MNN-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

MNN-3.0.0-cp39-cp39-win_amd64.whl (40.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

MNN-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

MNN-3.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

MNN-3.0.0-cp39-cp39-macosx_11_0_arm64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

MNN-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

MNN-3.0.0-cp38-cp38-win_amd64.whl (40.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

MNN-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

MNN-3.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

MNN-3.0.0-cp38-cp38-macosx_11_0_arm64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

MNN-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

MNN-3.0.0-cp37-cp37m-win_amd64.whl (40.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

MNN-3.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

MNN-3.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

MNN-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

MNN-3.0.0-cp36-cp36m-win_amd64.whl (40.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

MNN-3.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

MNN-3.0.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

MNN-3.0.0-cp36-cp36m-macosx_10_9_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file MNN-3.0.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: MNN-3.0.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 40.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for MNN-3.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bdecd0db123c42e03c350f70b8a91c6791f5b30a506a88e1fcf6a6303ef061ca
MD5 d9aaff2e5d9beaeda2f69afca8dbf3bb
BLAKE2b-256 3c9cfeeff7bfaad23bf56a3a2985794996165032562c0668f06f9dc51b9c526c

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fd19324fcd51418a032a86f0ae86aee8f180ce4925988e9ee9edcd2d27b09b3
MD5 d6617276e389d654971ca71c164ff081
BLAKE2b-256 cc42da0cbd3e2a06260c03ad95a0e8278b082283c7d7eb587f8c09b2c8975813

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f3ad6277efafec58278fa6cc5813704d2f58f846084a73296ea986d21fafa156
MD5 354dd1930761763a1338a1d90dfe8cb0
BLAKE2b-256 533426d1b97a4eebe44b13c6afe164f0e6548053a9f04533d3bbd65c3b482ed4

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0bd12f466d3b7e07f868c1e1e1519f4aee2535f69f64743c3a64308aaeff2a9b
MD5 fe2a7ee7fd744abf6a0701d7f9023bcc
BLAKE2b-256 3ef22405d95b55eab61c35d11e40bd504808d4cf7b4963e8e6cf814a479c8731

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab0ad1e945d709ab7b0ccaf41812d64a9814da65487848d7e8b35731bfb840dd
MD5 22b6d92d09e1bbf07b9962b5b02efae9
BLAKE2b-256 dcec79a32c11f5c797625d5a1a1c9900673e75b260b5ad4b524d82ddd2be0cd2

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: MNN-3.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 40.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for MNN-3.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6e959904663c68ab1b0a41adad56f53cff78a016f05b31cd56a5373d3adc403e
MD5 410a6e633199bd766345f0f296364897
BLAKE2b-256 96bb61e17fe1eb2f56a3339a0b9db4c4ede165ad06c6d8847512e853ca27d2a6

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 094e03997f8fe5173c449c6ba81114ff47af9557ee90d3186cd293de53d11be6
MD5 ac21f18cbe272cc258f9fc8fc3b17afc
BLAKE2b-256 f6169ecfe96f84bea5b0d2f030dcba940b1579001a74228106e3f9c85decc2d8

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f4cf5e68dfcc96bf39ac0c6fc94f31df50fb47f3e45a5de402777e13f0737fbb
MD5 c6e1fcfef56fd30f9e77b8fc0c541e2a
BLAKE2b-256 5e67549c2fb6a275a86bc715b5e4fcc768f7f648c26d3c223a24658cb58b2987

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b99e74d5e29dd9ec059a9d816429bcaec575a80db37f5c996a215a036735fdd
MD5 6baca5c0f30092ba8043740db32cd5ea
BLAKE2b-256 d9c18c94e1d98154b841fc88009f50ccd06219dc33ac29bc37218c5b4c9f432b

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2afbb557f750d5cc05ca95f15c7ebf8791a7c94b2eb05f0055c82781e48d3a52
MD5 38aba194be27fdccff2895d9b942c900
BLAKE2b-256 4785862f6239f2114b2aea56f76d3f1a785b58383ed21d416ca51873a0b73400

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: MNN-3.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 40.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for MNN-3.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 74bcea6db20aecbf8fb1352adef147c292c6bdf7c43f698ef4815ededb04a203
MD5 155995930e336344d9122d19e0f2f26c
BLAKE2b-256 c21362f8939c4402831e5e4140b3fd4848be625ae33d41a6b82ed8a50e43bdad

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86496b4f362bccabfc6ad2c4df97e2336f8a397223ad16eb72e4237e9eeda81c
MD5 41c6b8fbdfab5cd6a30a16825e5ba2b1
BLAKE2b-256 0c5bbcd98692e3880bbc7005f9592c978c6d19df764413c526a538a04a7df48e

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd74896524ef67faed508e639597aede8b8d2565c569ec31ce416262014b05cc
MD5 4b5565d1dbc9acc6615fd8bc58578006
BLAKE2b-256 316187cc5d336096cace716251694813d0728aa1c669f70f620b47ad058f37a8

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cfde41e92b32202d24037f999dc41f675019496f6e320d4859b38947a667dee1
MD5 409d6c907ee0ebe85e74239213221c56
BLAKE2b-256 129c1691dff324343c10bb17a7949478ad79de8945c47d2638cdacbcec64e889

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d01ac24c497542aeb890ce7bd2c3c9e79ff8167177e36f8217d2596f36a3c198
MD5 27ed678f3337b18c864c5e9b858ca1b4
BLAKE2b-256 43ec37aae6acebcfa5f94cf46390595040506a5f946a99a53a27fa40acda73fb

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: MNN-3.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 40.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for MNN-3.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b9d1873a315889862f39d8c1a33de92abf6cc46973344e2e98601718e8f1e453
MD5 3f8a711c2bca84cc57b8ae3181ddd5f0
BLAKE2b-256 d72eff348b7011fee79e8366dfeaf05257b9d090c7dd9c1131611b2012b396ff

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 471497b98399595ce74d0e7f5dbafaf247531b4ac8ad2cd686161612d2afc5ab
MD5 c4ac46e971cd619640ca44a0b6bf38a5
BLAKE2b-256 01867ca3d5f17729a2f231db9b6d059cd26c85c841f8f6edf968f89857b594f1

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ae9daed5b1c747e8b5822bca7ac2060ccafb57768c9bf19e8d7aac4d29ff7520
MD5 244734b3bfcd353e20a9cb6c8c330461
BLAKE2b-256 0fd9b4acc57e0c4f89106490313ddc3ce79e388ee2f3aedc67a99c9f6fa7671d

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ce1cdbc990edc6626aea2185284e426948c818c7843e755e04aa516b9cf1bd4
MD5 d533ba30d78620b4a2278bae93c357a7
BLAKE2b-256 eb1810a923cf4a1f2fc6828d3f2b04ca70bb063e828159e8fad61b394303669e

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8460a5b0c6e7d45210c682e95c7b6e87d86265bd3d6ceb368021e3d584a3c065
MD5 61686b1d1e06287b347d56d5f3c5ec63
BLAKE2b-256 e25a6edeb4554881216943b93b4ea20bb3f07338818b3674c6993c519ec9432b

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: MNN-3.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 40.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for MNN-3.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f7e241bf6ba3b839675fc462405652ea81ce2f4d463319cfd723bf96fa7c8922
MD5 92bfbf85bd7f47366cdcfc85f463669c
BLAKE2b-256 84020ca18f0040f30e7f61d6a40c5c061e3ea17b6cb47d0aafbcba45a6905a67

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 306b9501f220d320ac0c33aa19b6b7ae6cda628bea2b3ce8fd01569c9b3b7e99
MD5 ec4bf78e281355ab4c210f51a11be0b8
BLAKE2b-256 43db931f97d57403963e7f9b86b3d3e0db9c630311e6cd7278692d6242018d72

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 313c28ad199b215319aa1e71c049543549f0f9b0dee238d90b65163ba1fffb65
MD5 a1025763906454686c3a621d83de4faa
BLAKE2b-256 d37f0557d0ded8b722f3a45a29e6eb5b42dbc319c34766d4f8e6b47e072158fb

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f25898437fcc4870d360a4c8a68124977c0b22441ce51617d63873cc7b27e416
MD5 cc7376933666d857900d4bbcabdae4ba
BLAKE2b-256 5b99d5d0ce91bc1f2f363c66c7a77999e2823717a1cf468b6e5a9860bea5eb80

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6608d6c600ef30cc010a57a00f13d5062dfa760789cdb3473e55a33110cacd2a
MD5 a561f3532609bd5458921f76c8c0a0ca
BLAKE2b-256 7ed6c2460bc1e23d40e4d0bd1cee1c7b9d8ce727507c7450a1d8a32b2fb59ca0

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: MNN-3.0.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 40.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for MNN-3.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bfd7fd5ba288f94a1d7c5b99a07f4b354838ef5ef68bd95ad3be39287966ae38
MD5 a84ed634ed8167226628f1c8eb27e40c
BLAKE2b-256 008d707c7d16e87b77a882e16f38d4004e15ad199c8ce73060330ede1b2b0d12

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1adc8a2ce029a199b70189a603c54f8e174be06a087bff192172397c6e9b710c
MD5 800e1a33279d551a5e99c4a55cde7599
BLAKE2b-256 1a6b7f26de19dc647356cca44fe3e161a565deecd1602e420ea0b57d7145c9c3

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a33520785f51b3a1f589514d425a1cbf616a30d67e2e1d213cab2b9af96f1398
MD5 32650cb22a3997fbcb49acddb067aaf1
BLAKE2b-256 019895f308ad36690dcf03fed68fa3ac64f4c9e628a198b7e111c3510535bdea

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 446fa7a21825418aecb1dad957b09e8e8281d7d9eec9083bc9f967c5544a995f
MD5 1a58e58146977e7b079611dcc143d822
BLAKE2b-256 cf35c971e4e0fe809abacf15e33aeba34c50896b097a254caa2855a310f14d9b

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: MNN-3.0.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 40.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for MNN-3.0.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 01ae1b86757d031aeabcc58a91897c6b4b762068dc58db21af076686e55dec24
MD5 9876ff9e33fda7797fb2e5a8d299d257
BLAKE2b-256 16f63346d1d66b50d70ea10c29979a175360335efb658b334a3cecb6cee215ff

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd3c5015ba08bab9bda740c5e7365460b954773071ca2f223f08cb37c1310668
MD5 9523a2631204b123dc4d2ab3a00d6245
BLAKE2b-256 af9df6324f5d79fd204510e46da4913f90fd05e339cc67c7b7d32b1199247aae

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 35f93bda40724f45701bf1c861da283ef3b4e21cd1c4e739e195715dc5588282
MD5 e530fd37900d213adaa8f5b189031432
BLAKE2b-256 c21c15eec691459a479e42b1fcb45f4c21150e43095f5917ea811596c4455f7d

See more details on using hashes here.

File details

Details for the file MNN-3.0.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MNN-3.0.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b86759a25ad4703e397f9f9767362c8ddc87d5eabb084070187aaccbe1d7d8aa
MD5 b72019fa32ed56ef40f9b1defc3ab086
BLAKE2b-256 ea2b67401da015385c0483f064c33bbf446bdf76c86448c8a8c2cf5ce6abcffc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page