Skip to main content

An automation black-box testing framework based on image recognition

Project description

LOGO

MaaFramework

✨ 基于图像识别的自动化黑盒测试框架 ✨

license C++ platform commit stars

简介

MaaFramework 是基于图像识别技术、运用 MAA 开发经验去芜存菁、完全重写的新一代自动化黑盒测试框架。

低代码的同时仍拥有高扩展性,旨在打造一款丰富、领先、且实用的开源库,助力开发者轻松编写出更好的黑盒测试程序,并推广普及。

即刻开始

最佳实践

  • M9A 1999 小助手 Pipeline
    基于全新架构的 亿韭韭韭 小助手。图像技术 + 模拟控制,解放双手!由 MaaFramework 强力驱动!

  • MAABH3 《崩坏3》小助手 | A one-click tool for the daily tasks of Honkai Impact. cpp
    基于全新架构的 蹦蹦蹦 小助手。图像技术 + 模拟控制,解放双手!由 MaaFramework 强力驱动!

  • MAALimbusCompany 边狱公司 小助手 Pipeline
    基于全新架构的 边狱公司 小助手。图像技术 + 模拟控制,解放双手!由 MaaFramework 强力驱动!

  • MBA BA 小助手 csharp
    基于 MAA 全新架构的 BA 小助手。图像技术 + 模拟控制,解放双手,不再点点点!由 MaaFramework 强力驱动!

  • MAS 森空岛 小助手 Pipeline
    基于全新架构的 森空岛 小助手。图像技术 + 模拟控制,解放双手!由 MaaFramework 强力驱动!

  • MRA 雷索纳斯 列车长 小助手 Rust Tauri
    基于全新架构的 列车长 小助手。图像技术 + 模拟控制,解放双手!由 MaaFramework 强力驱动!

  • MaaHatsuboshiTA 学院偶像大师 初星助教 Pipeline
    基于全新架构的制作人代肝工具,养肝护眼 + 节省时间,出轨美铃! 由 MaaFramework 强力驱动!

  • MCCA 交错战线 小助手 Pipeline
    基于全新架构的 交错战线 小助手。图像技术 + 模拟控制,解放双手!由 MaaFramework 强力驱动!

  • MSBA 分析员 小助手 Pipeline
    基于全新架构的 尘白禁区 小助手。图像技术 + 模拟控制,解放双手!由 MaaFramework 强力驱动!

  • MaaAeonFantasy 星神少女 预言之子 小助手 Pipeline
    基于全新架构的 星神少女 小助手。图像技术 + 模拟控制,让手去做它该做的事!由 MaaFramework 强力驱动!

  • maa-whmx 物华弥新 小助手 cpp qt
    基于全新架构的 物华弥新 小助手。图像技术 + 模拟控制,解放双手!由 MaaFramework 强力驱动!

  • MAA-for-Millennium-Tour 千年之旅 小助手 Pipeline python
    基于全新架构的 千年之旅 小助手。图像技术 + 模拟控制,解放侍主的大手!由 MaaFramework 强力驱动!

  • MFAWPF MFA 任务管理器 csharp
    基于 MAA 全新架构的 通用 GUI。由 MaaFramework 强力驱动!

  • MET 悠久之树 小助手 Pipeline
    基于全新架构的 悠久之树 小助手。图像技术 + 模拟控制,解放双手!由 MaaFramework 强力驱动!

生态共建

MAA 正计划建设为一类项目,而非舟的单一软件。

若您的项目依赖于 MaaFramework ,我们欢迎您将它命名为 MaaXXX, MXA, MAX 等等。当然,这是许可而不是限制,您也可以自由选择其他与 MAA 无关的名字,完全取决于您自己的想法!

同时,我们也非常欢迎您提出 PR ,在上方的最佳实践列表中添加上您的项目!

许可证

MaaFramework 采用 LGPL-3.0 许可证进行开源。

开发

请留意,仅当您准备开发 MaaFramework 本身时,才需要阅读本章节内容。若您仅希望基于 MaaFramework 开发自己的应用,则请参考 即刻开始

鸣谢

开源库

  • opencv
    Open Source Computer Vision Library
  • fastdeploy
    ⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
  • onnxruntime
    ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator
  • boost
    Boost provides free peer-reviewed portable C++ source libraries.
  • meojson
    A modern all-platform Json/Json5 parser/serializer, which is header-only and used magic!
  • minitouch
    Minimal multitouch event producer for Android.
  • maatouch
    Android native implementation of minitouch input protocol
  • minicap
    Stream real-time screen capture data out of Android devices.
  • zlib
    A massively spiffy yet delicately unobtrusive compression library.
  • gzip-hpp
    Gzip header-only C++ library
  • protobuf
    Protocol Buffers - Google's data interchange format
  • grpc
    The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)
  • thrift
    Apache Thrift

开发者

感谢以下开发者对 MaaFramework 作出的贡献:

讨论

  • 集成/开发交流 QQ 群: 595990173

赞助

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

MaaFw-2.1.0a1-py3-none-win_arm64.whl (22.6 MB view details)

Uploaded Python 3 Windows ARM64

MaaFw-2.1.0a1-py3-none-win_amd64.whl (24.2 MB view details)

Uploaded Python 3 Windows x86-64

MaaFw-2.1.0a1-py3-none-manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded Python 3

MaaFw-2.1.0a1-py3-none-macosx_13_0_x86_64.whl (16.6 MB view details)

Uploaded Python 3 macOS 13.0+ x86-64

MaaFw-2.1.0a1-py3-none-macosx_13_0_arm64.whl (13.8 MB view details)

Uploaded Python 3 macOS 13.0+ ARM64

File details

Details for the file MaaFw-2.1.0a1-py3-none-win_arm64.whl.

File metadata

  • Download URL: MaaFw-2.1.0a1-py3-none-win_arm64.whl
  • Upload date:
  • Size: 22.6 MB
  • Tags: Python 3, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for MaaFw-2.1.0a1-py3-none-win_arm64.whl
Algorithm Hash digest
SHA256 b461b845a0e047a87460bc9f9a016277c644ea3695ef2d04ffa494f83e024afa
MD5 d75be5c4e1523193515b14f1c971105e
BLAKE2b-256 5b0b90623830db5154b34f1d2cc0265cdce93be5f95480fb583b2c6c195d357c

See more details on using hashes here.

File details

Details for the file MaaFw-2.1.0a1-py3-none-win_amd64.whl.

File metadata

  • Download URL: MaaFw-2.1.0a1-py3-none-win_amd64.whl
  • Upload date:
  • Size: 24.2 MB
  • Tags: Python 3, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for MaaFw-2.1.0a1-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 336ad062fde4e9274f397e92494e5875fcc961276a4436c1f106fd64aecbf8f6
MD5 529cc1b18fd63fb1efb58cb9dc0099e5
BLAKE2b-256 a7ff7e878ea5d74df6e456b83954cc0844ad6b3d4bb355bc8f15bf6a4725c4c8

See more details on using hashes here.

File details

Details for the file MaaFw-2.1.0a1-py3-none-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MaaFw-2.1.0a1-py3-none-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ed39f44720ab7e44b22cabe78a4d4907122642d1667ea53bc0c789dcfce0d09
MD5 34e27a8ab645e4f35dbae9526e8f9c58
BLAKE2b-256 d0645bccfecdb2bd9c69b37df28171198238b3c3d73f0a85e1dcfc383a2d9675

See more details on using hashes here.

File details

Details for the file MaaFw-2.1.0a1-py3-none-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for MaaFw-2.1.0a1-py3-none-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 af1dc1b524fd29d50609e6a1eacc70a3d4a62f6aac0a5893cda5b2d87eb2d37d
MD5 20723bf97071f231c670c26419e53910
BLAKE2b-256 c64542026391e1b268d564c53ff05718dbc755149d18c89177beaa40ce4b06d3

See more details on using hashes here.

File details

Details for the file MaaFw-2.1.0a1-py3-none-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for MaaFw-2.1.0a1-py3-none-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 c722c686e1ce9826a2edc529c5daa9a35060da4327ee2eedc65e12e2a5b90867
MD5 3507160627e3e50e5f24b2b2930cc666
BLAKE2b-256 631b1edcd77993ce0b00831bdca6aa24253b33a4ee584a4c2a61e95b8b7a690f

See more details on using hashes here.

File details

Details for the file MaaFw-2.1.0a1-py3-none-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for MaaFw-2.1.0a1-py3-none-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 c3b9ab6cfd9848bdef65e39f857d1ba3fe53939ac5daea30a1a906f14e55fa5c
MD5 087cedade83b91e0ddb22d735a09e85b
BLAKE2b-256 f80b0909e2672f4a1145147bff47e2cc14310b37471e572c0543ac22e58de178

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page