Skip to main content

A small and basic package to create randomized MongoDB documents and trivial load.

Project description

# MongoDataRandomizer

This is a simple data randoizer to load up a MongoDB database with data.

## Installation
### From PyPI
* `pip install MongoRandomizer`

### From Source
* Download source code
* `cd` to the download directory
* Run `pip install --editable .`

## Use
### Help
```
graboskycMBP:~ graboskyc$ MongoRandomizer -h
usage: MongoRandomizer [-h] [-c CS] [-t T] [-b B] [-m M] [-p P] [-w WC] [-j]
[-g]
task

CLI Tool for continually writing random data to a MongoDB database for testing
purposes

positional arguments:
task clean, insert, insertAndUpdate, read, everything

optional arguments:
-h, --help show this help message and exit
-c CS server connection string
-t T threads to use, if left off, use 10
-b B blocksize to use. if not inclided, use 1000
-m M max blocks to use. if not inclided, use 1000
-p P additional chars of padding to increase document size
-w WC write concern to use. if blank, none used
-j, --journaling if omitted, false. if flag enabled, journal
-g, --geo if omitted, use customer data. if flag enabled push
geographic data
```

### Random Inserts

```
graboskycMBP:~ graboskyc$ MongoRandomizer -c mongodb://localhost -t 5 -b 500 -p 10 -w 1 -j insert

About to enter data in:
Threads: 5
DB: demodb
Collection: democollection
Blocksize: 1000
Max Blocks: 500
Write Concern: 1
Journaling: True

This process will continue until you press control+c or break
```

### Sample Document
```
{
"_id" : ObjectId("5b7db58ecc39345cebc78f67"),
"prescriptions" : [
"Drug water adult.",
"Enjoy month.",
"Just always wind summer.",
"Bad street me.",
"Assume.",
"Section.",
"Forward nearly.",
"Town community boy.",
"Vote major.",
"Walk.",
"Left night receive.",
"Relationship speak.",
"Affect nearly.",
"Present star special.",
"Employee instead.",
"Kid foot direction poor.",
"Determine law."
],
"accountNumber" : 48,
"padding" : "aaaaaaaaaa",
"address" : "847 Ferguson Rd.",
"payment" : 60,
"occupation" : "Aid worker",
"singupDate" : ISODate("2018-08-22T19:11:55.442Z"),
"copay" : 20,
"notes" : "Crime evening nation artist blue far fast generation. Play list range none before night everyone. Doctor make score around.",
"zipcode" : "43418",
"state" : "WY",
"fullname" : "Donna Webster",
"deductible" : 300
}
```

### Sample Geo Document
```
{
"_id" : ObjectId("5b9fd129cc39341758236d80"),
"padding" : "",
"notes" : "Wait mean performance view billion plan civil this. Cup prevent season.\nEffect thought while get market war wife oil.",
"name" : "Mr. Antonio Salas MD",
"location" : {
"type" : "Point",
"coordinates" : [
-73.59354663520122,
42.00216814289992
]
}
}
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MongoRandomizer-0.3.9.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

MongoRandomizer-0.3.9-py2-none-any.whl (5.6 kB view details)

Uploaded Python 2

File details

Details for the file MongoRandomizer-0.3.9.tar.gz.

File metadata

  • Download URL: MongoRandomizer-0.3.9.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/2.7

File hashes

Hashes for MongoRandomizer-0.3.9.tar.gz
Algorithm Hash digest
SHA256 e0e57b769bcd67642470dc1555ccfb4359f21560e745e6ac8634f375ed054dac
MD5 bd685e53dbc8f8e661cf698d6fa2fb16
BLAKE2b-256 9c83081deadfab2ec9d622c903697ee7731a5b581a7ee897ee253ea6a394614b

See more details on using hashes here.

File details

Details for the file MongoRandomizer-0.3.9-py2-none-any.whl.

File metadata

  • Download URL: MongoRandomizer-0.3.9-py2-none-any.whl
  • Upload date:
  • Size: 5.6 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/2.7.15

File hashes

Hashes for MongoRandomizer-0.3.9-py2-none-any.whl
Algorithm Hash digest
SHA256 ab851809c9a470f7e2f738ad6a182bf5cc53d6e4fa19e9595deb3b7bd2249a92
MD5 491561027226f63a43eaf6c157c5dcb3
BLAKE2b-256 4026291f23f570b612072250da9178b27c00a38e509cec6687ac94346fc17541

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page