Skip to main content

Setup local serverless ESA Gaia / 2MASS / ALLWISE / CATWISE databases and run query locally with Python

Project description

Why share when you can have the entire Gaia database locally?

MyGaiaDB is a simple Python package that provides scripts to help you set up a local Gaia DR3 database, along with local 2MASS, ALLWISE, and CATWISE databases, without needing administrative privileges. It’s compatible with all major platforms (Linux, Mac, and Windows) because MyGaiaDB is serverless and only requires Python with sqlite, as long as you have enough disk space.

This code was primarily developed to assist with my research project involving Gaia DR3 XP spectra. It is not intended to cover every aspect of research using Gaia’s 1 billion stars. The main goal of this code is to make setting up a local Gaia database, along with 2MASS, ALLWISE, and CATWISE, accessible to everyone. Potential use cases include, but are not limited to, making complex and lengthy cross-matching queries with multiple databases, which can be time-consuming (especially given the online ESA Gaia archive’s timeout limitations).

Feel free to modify the code and submit pull requests to enhance its functionality for yourself and others.

Parts of this code are not continuously tested, as it is impractical to run this code with several terabytes of Gaia data on GitHub Actions.

Installation and Dependencies

This code requires python >= 3.8 with numpy, pandas, h5py, astropy and tqdm. This code only needs the sqlite3 library that comes bundled with your Python installation. For some optional functionalities, galpy, mwdust are required. Downloading functions will require wget.

You can install the precompiled MyGaiaDB wheels by running pip install mygaiadb.

Alternatively, you can compile the code locally from the source. You’ll need to add the folder containing sqlite3ext.h to your INCLUDE environment variable. For Conda users, the commands are:

  • Windows Command Prompt: set INCLUDE=%CONDA_PREFIX%\Library\include;%INCLUDE%

  • Windows PowerShell: $env:INCLUDE="$env:CONDA_PREFIX\Library\include"

  • MacOS: export CFLAGS=-I$CONDA_PREFIX/include

  • Linux: No action needed usually

Then, you can run python -m pip install . to install the latest commits from GitHub or `python -m pip install -e .` to develop MyGaiaDB locally.

Folder Structure

Ensure you have at least ~8TB of free disk space with fast random read speed for optimal query performance. First, set an environment variable called MY_ASTRO_DATA that points to a folder containing your astronomical data. To be compatible with other Python packages, there should be a folder called gaia_mirror under MY_ASTRO_DATA that contains all Gaia data (similar to the GAIA_TOOLS_DATA environment variable used by Jo Bovy’s gaia_tools).

If starting from scratch on a clean computer, set the MY_ASTRO_DATA environment variable, and MyGaiaDB will populate the necessary files and folders. MyGaiaDB will use the ~/.mygaiadb folder to save user-specific settings and tables.

If you already have the data on your computer but in a different directory structure and cannot move them, you can use symbolic links to create the required folder structure without duplicating files. For Linux and MacOS, use ln -s {source-dir-or-file-path} {symbolic-dir-or-file-path}. For Windows, use mklink {symbolic-file-path} {source-file-path} or mklink /D {symbolic-dir-path} {source-dir-path}. The case sensitive folder structure should look something like the following chart:

~/
├── .mygaiadb

$MY_ASTRO_DATA/
├── gaia_mirror/
│   ├── Gaia/
│   │   ├── gdr3/
│   │   │   ├── Astrophysical_parameters/astrophysical_parameters/
│   │   │   │   ├── _MD5SUM.txt
│   │   │   │   ├── AstrophysicalParameters_000000-003111.csv.gz
│   │   │   │   ├── ******
│   │   │   │   └── AstrophysicalParameters_786097-786431.csv.gz
│   │   │   ├── gaia_source/
│   │   │   │   ├── _MD5SUM.txt
│   │   │   │   ├── GaiaSource_000000-003111.csv.gz
│   │   │   │   ├── ******
│   │   │   │   └── GaiaSource_786097-786431.csv.gz
│   │   │   ├── cross_match/
│   │   │   │   ├── allwise_best_neighbour/
│   │   │   │   │   ├── _MD5SUM.txt
│   │   │   │   │   ├── allwiseBestNeighbour0001.csv.gz
│   │   │   │   │   ├── ******
│   │   │   │   │   └── allwiseBestNeighbour0033.csv.gz
│   │   │   │   ├── tmasspscxsc_best_neighbour/
│   │   │   │   │   ├── _MD5SUM.txt
│   │   │   │   │   ├── tmasspscxscBestNeighbour0001.csv.gz
│   │   │   │   │   ├── ******
│   │   │   │   │   └── tmasspscxscBestNeighbour0047.csv.gz
│   │   │   ├── Spectroscopy/
│   │   │   │   ├── rvs_mean_spectrum/
│   │   │   │   │   ├── _MD5SUM.txt
│   │   │   │   │   ├── RvsMeanSpectrum_000000-003111.csv.gz
│   │   │   │   │   ├── ******
│   │   │   │   │   └── RvsMeanSpectrum_786097-786431.csv.gz
│   │   │   │   ├── xp_continuous_mean_spectrum/
│   │   │   │   │   ├── _MD5SUM.txt
│   │   │   │   │   ├── XpContinuousMeanSpectrum_000000-003111.csv.gz
│   │   │   │   │   ├── ******
│   │   │   │   │   └── XpContinuousMeanSpectrum_786097-786431.csv.gz
│   │   │   │   ├── xp_sampled_mean_spectrum/
│   │   │   │   │   ├── _MD5SUM.txt
│   │   │   │   │   ├── XpSampledMeanSpectrum_000000-003111.csv.gz
│   │   │   │   │   ├── ******
│   │   │   │   │   └── XpSampledMeanSpectrum_786097-786431.csv.gz
├── 2mass_mirror/
│   ├── psc_aaa.gz
│   ├── ******
│   └── xsc_baa.gz
├── allwise_mirror/
│   ├── wise-allwise-cat-part01.bz2
│   ├── ******
│   └── wise-allwise-cat-part48.bz2
└── catwise_mirror/
    └── 2020/
        ├── 000/
        │   ├── 0000m016_opt1_20191208_213403_ab_v5_cat_b0.tbl.gz
        │   └── ******
        ├── 001/
        │   ├── 0015m016_opt1_20191209_054819_ab_v5_cat_b0.tbl.gz
        │   └── ******
        └── ******

Downloading Data

To download and populate data with MyGaiaDB, you can do

from mygaiadb.data import download

# for gaia_source
download.download_gaia_source()
# for gaia astrophysical_parameters
download.download_gaia_astrophysical_parameters()
# for 2mass best neightbour
download.download_2mass_best_neightbour()
# for allwise best neightbour
download.download_allwise_best_neightbour()
# for 2MASS
download.download_2mass()
# for allwise
download.download_allwise()
# for catwise
download.download_catwise()
# for xp continuous
download.download_gaia_xp_continuous()
# for xp sampled
download.download_gaia_xp_sampled()
# for rvs spectra
download.download_gaia_rvs()

Official data links:

Compiling Databases

The following functions are used to compile the databases. Each function only needs to be run once per computer where the data is stored, and each function will generate large-sized files. If you are using a shared computing server, only one user needs to run these functions. Once the databases are compiled, share the MY_ASTRO_DATA folder path with other users. They can set their own MY_ASTRO_DATA environment variable to point to that folder. Multiple users on the same computers can access the SQL database simultaneously, as MyGaiaDB will set the databases to read-only mode before loading them, preventing accidental modifications.

from mygaiadb.data import compile

# compile Gaia SQL dataset
compile.compile_gaia_sql_db()
# compile 2MASS SQL dataset
compile.compile_tmass_sql_db()
# compile ALLWISE SQL dataset
compile.compile_allwise_sql_db()
# compile CATWISE SQL dataset
compile.compile_catwise_sql_db()

# turn compressed XP coeffs files to h5, with options to save correlation matrix too
# a large amount of disk space (~3TB) is required if save_correlation_matrix=True
compile.compile_xp_continuous_h5(save_correlation_matrix=False)
# compile all XP coeffs into a single h5, partitioned batches of stars by their HEALPix
# with options to save correlation matrix too, BUT it requires yo to run compile_xp_continuous_h5(save_correlation_matrix=True) first
# a large amount of disk space (~3TB) is required if save_correlation_matrix=True
compile.compile_xp_continuous_allinone_h5(save_correlation_matrix=False)

SQL Databases Data Model

In MyGaiaDB, the following databases are available if all have been compiled: gaiadr3.gaia_source, gaiadr3.allwise_best_neighbour, gaiadr3.tmasspscxsc_best_neighbour, gaiadr3.astrophysical_parameters, tmass.twomass_psc, allwise.allwise and catwise.catwise. A few utility functions are available to list tables and their columns. Below is a brief description of each table:

You can use the list_all_tables() function to get a list of tables, excluding user_table. For example:

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()

# print a list of tables
print(local_db.list_all_tables())

You can use get_table_column(table_name) to get a list of columns of a table which must be in the format of {database_name}.{table_name}, gaiadr3.gaia_source in this case

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()

# print a list of columns of a table
print(local_db.get_table_column("gaiadr3.gaia_source"))

If you want to manage and edit the databases with GUI, you can try to use SQLiteStudio or DB Browser for SQLite.

SQL Query

SQL query in MyGaiaDB is largely the same as Gaia Archive. Although MyGaiaDB has implemented all mathematical functions in way aligned with ADQL, MyGaiaDB has only implemented a few advanced ADQL function like DISTANCE as well as additional functions on ESA Gaia TAP+.

For example the following query which used a special function called DISTANCE defined in ADQL

SELECT DISTANCE(179., 10., G.ra, G.dec) as ang_sep
FROM gaiadr3.gaia_source as G
WHERE G.source_id = 4472832130942575872

returns 89.618118 on Gaia Archive. And you can also use such query in the same manner as you would on Gaia Archive

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()
local_db.query("""
    SELECT DISTANCE(179., 10., G.ra, G.dec) as ang_sep
    FROM gaiadr3.gaia_source as G
    WHERE G.source_id = 4472832130942575872
""")

and you will get the same result of 89.618118.

For example the following query which utilize conventional maths function to approximate uncertainty in Gaia G magnitude

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()
# CDS equation for conversion: http://vizier.cds.unistra.fr/viz-bin/VizieR-n?-source=METAnot&catid=1350&notid=63&-out=text
local_db.query("""
    SELECT sqrt(power(((2.5 / log(10)) * (1 / G.phot_g_mean_flux_over_error)), 2) + power(0.0027553202, 2)) as phot_g_mean_mag_error
    FROM gaiadr3.gaia_source as G
    WHERE G.source_id = 3158175803069175680
""")

Another example is the following query that works on Gaia Archive will also work in MyGaiaDB to select the first 100 gaia sources with XP coefficients

SELECT TOP 100 *
FROM gaiadr3.gaia_source as G
WHERE (G.has_xp_continuous = 'True')

To run this query in MyGaiaDB, you can do the following and will get a pandas Dataframe back as the result

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()
local_db.query("""SELECT TOP 100 * FROM gaiadr3.gaia_source as G  WHERE (G.has_xp_continuous = 'True')""")

The following example query is too complex for Gaia Archive, thus you will get timeout error but luckily, you’ve got MyGaiaDB to do the job. The following example query from gaia_source table, astrophysical_parameters table, 2MASS and ALLWISE table all at once. Moreover, MyGaiaDB set each dataset to read-only before loading it. If you want to edit the database afterward, you must set the appropriate permission manually each time you have used MyGaiaDB.

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()

query = """
SELECT G.source_id, G.ra, G.dec, G.pmra, G.pmdec, G.parallax, G.parallax_error, G.phot_g_mean_mag, GA.logg_gspspec,
TM.j_m, AW.w1mpro
FROM gaiadr3.gaia_source as G
INNER JOIN gaiadr3.astrophysical_parameters as GA on GA.source_id = G.source_id
INNER JOIN gaiadr3.tmasspscxsc_best_neighbour as T on G.source_id = T.source_id
INNER JOIN gaiadr3.allwise_best_neighbour as W on W.source_id = T.source_id
INNER JOIN tmass.twomass_psc as TM on TM.designation = T.original_ext_source_id
INNER JOIN allwise.allwise as AW on AW.designation = W.original_ext_source_id
WHERE (G.has_xp_continuous = 1) AND (G.ruwe < 1.4) AND (G.ipd_frac_multi_peak <= 2) AND (G.ipd_gof_harmonic_amplitude<0.1) AND (GA.logg_gspspec < 3.0)
"""

# take ~12 hours to complete
local_db.save_csv(query, "output.csv", chunksize=50000, overwrite=True, comments=True)

As you can see for has_xp_continuous, we can also use 1 to represent true which is used by Gaia archive but both are fine with MyGaiaDB. The overwrite=True means the function will save the file even if the file with the same name already exists. The comments=True means the function will save the query as a comment in the csv file so you know how to reproduce the query result. To read the comments from the csv file, you can use the following code

from itertools import takewhile
with open("output.csv", "r") as fobj:
    headiter = takewhile(lambda s: s.startswith("#"), fobj)
    header = list(headiter)
print(" ".join(header).replace(" # ", "").replace("# ", ""))

MyGaiaDB also has callbacks functionality called QueryCallback, these callbacks can be used when you do query. For example, you can create a callbacks to convert ra in degree to ra_rad in radian. So your csv file in the end will have a new column called ra_rad. Functions in QueryCallback must have arguments with exact column names in your query so MyGaiaDB knows which columns to use on the fly.

import numpy as np
from mygaiadb.query import LocalGaiaSQL, QueryCallback

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()

query = """
SELECT G.source_id, G.ra, G.dec
FROM gaiadr3.gaia_source as G
LIMIT 100000
"""
ra_conversion = QueryCallback(new_col_name="ra_rad", func=lambda ra: ra / 180 * np.pi)

local_db.save_csv(query, "output.csv", chunksize=50000, overwrite=True, callbacks=[ra_conversion], comments=True)

We also have a few useful callbacks included by default to add columns like zero-point corrected parallax or extinction

from mygaiadb.query import ZeroPointCallback, DustCallback

query = """
SELECT G.source_id, G.ra, G.dec, G.parallax, G.phot_bp_mean_mag, G.nu_eff_used_in_astrometry, G.pseudocolour, G.astrometric_params_solved
FROM gaiadr3.gaia_source as G
LIMIT 100000
"""

# adding zero-point corrected parallax using official Gaia DR3 parallax zero-point python package
zp_callback = ZeroPointCallback(new_col_name="parallax_w_zp")
# adding SFD E(B-V) in H band filter using mwdust python package
dust_callback = DustCallback(new_col_name="sfd_ebv", filter="H", dustmap="SFD")

local_db.save_csv(query, "output.csv", chunksize=50000, overwrite=True, callbacks=[zp_callback, dust_callback])

User tables

MyGaiaDB support the use of user uploaded table. You can load your table first by pandas and then do

from mygaiadb.query import LocalGaiaSQL
local_db = LocalGaiaSQL()
local_db.upload_user_table(pd.DataFrame({"source_id": [5188146770731873152, 4611686018427432192, 5764607527332179584]}), tablename="my_table_1")

and then carry-on doing query with my_table_1 cross-matching with other tables like

local_db.query("""SELECT * FROM gaiadr3.gaia_source as G  INNER JOIN user_table.my_table_1 as MY on MY.source_id = G.source_id""")

You can check the list of your own user tables with column names by using list_user_tables()

local_db.list_user_tables()

and you can remove a user table like my_table_1 in this case by using remove_user_table()

local_db.remove_user_table("my_table_1")

Gaia XP Spectroscopy Query

There can be use case where you want to run a function (e.g., a machine learning model) to a large batch of Gaia source ids with reasonable memory usage. You can use MyGaiaDB to do that in batch provided you have compiled a single h5 with mygaiadb.compile.compile_xp_continuous_allinone_h5()

from mygaiadb.spec import yield_xp_coeffs

for i in yield_xp_coeffs(a_very_long_source_id_array):
    coeffs, idx = i
    # XP coeffs of idx from the original a_very_long_source_id_array

# alternatively if you also want coeffs error
for i in yield_xp_coeffs(a_very_long_source_id_array, return_errors=True):
    coeffs, idx, coeffs_err = i  # unpack

# alternatively if you want coeffs error and some other columns like bp_n_relevant_basesand rp_n_relevant_bases
# ref: https://gea.esac.esa.int/archive/documentation/GDR3//Gaia_archive/chap_datamodel/sec_dm_spectroscopic_tables/ssec_dm_xp_summary.html
for i in yield_xp_coeffs(a_very_long_source_id_array, return_errors=True, return_additional_columns=["bp_n_relevant_bases", "rp_n_relevant_bases"]):
    coeffs, idx, coeffs_err, bp_n_relevant_bases, rp_n_relevant_bases = i  # unpack

For example you want to infer M_H with your machine learning model on many XP spectra

from mygaiadb.spec import yield_xp_coeffs

m_h = np.ones(len(a_very_long_source_id_array)) * np.nan
for i in yield_xp_coeffs(a_very_long_source_id_array):
    coeffs, idx = i  # unpack
    m_h[idx] = your_ml_model(coeffs)

Author

  • Henry Leung - henrysky
    University of Toronto
    Contact Henry: henrysky.leung [at] utoronto.ca

This package is original developed for the paper Towards an astronomical foundation model for stars with a Transformer-based model.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mygaiadb-0.5.0.tar.gz (42.4 kB view details)

Uploaded Source

Built Distributions

MyGaiaDB-0.5.0-cp312-cp312-win_amd64.whl (45.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

MyGaiaDB-0.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (57.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

MyGaiaDB-0.5.0-cp312-cp312-macosx_11_0_arm64.whl (42.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

MyGaiaDB-0.5.0-cp312-cp312-macosx_10_9_x86_64.whl (41.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

MyGaiaDB-0.5.0-cp311-cp311-win_amd64.whl (45.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

MyGaiaDB-0.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (57.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

MyGaiaDB-0.5.0-cp311-cp311-macosx_11_0_arm64.whl (42.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

MyGaiaDB-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl (41.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

MyGaiaDB-0.5.0-cp310-cp310-win_amd64.whl (45.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

MyGaiaDB-0.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (57.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

MyGaiaDB-0.5.0-cp310-cp310-macosx_11_0_arm64.whl (42.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

MyGaiaDB-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl (41.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

MyGaiaDB-0.5.0-cp39-cp39-win_amd64.whl (45.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

MyGaiaDB-0.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (57.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

MyGaiaDB-0.5.0-cp39-cp39-macosx_11_0_arm64.whl (42.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

MyGaiaDB-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl (41.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

MyGaiaDB-0.5.0-cp38-cp38-win_amd64.whl (45.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

MyGaiaDB-0.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (57.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

MyGaiaDB-0.5.0-cp38-cp38-macosx_11_0_arm64.whl (42.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

MyGaiaDB-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl (41.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file mygaiadb-0.5.0.tar.gz.

File metadata

  • Download URL: mygaiadb-0.5.0.tar.gz
  • Upload date:
  • Size: 42.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for mygaiadb-0.5.0.tar.gz
Algorithm Hash digest
SHA256 66704e73820eed88c3bab4c5440b5ffe5f2137b945d5f0a7220dfb45ac4a5c65
MD5 5534782d5df5297012e7ecd35298a3e6
BLAKE2b-256 69ba9cff0691706da019bef84c05226eb1bc0685894cf8fcee18c904ce95e342

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5a7fc533c6d28d65e5be6d137d1c58369295c68bae7f3b1089ddd55748162f43
MD5 75eb73f3cbfbcaf7ceb860472da70aba
BLAKE2b-256 1c8f22cc92c66e165647da658affd587daf94edc4ebcbd1cd37ba8101e4e993a

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adce19e78ae186d27b4d4c6604515d0bcc405134a200e0bbc00fbdfc7fc6c32d
MD5 03348794e892bc92db664da70ff04d8e
BLAKE2b-256 126a6faacbf31a1fce5464a7cb20184647667a19ac185844b23274ca8506ac7d

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 76bbdc6244941adc0dd786c9bddc91361830c846b9b0c10b4cb96968d830bade
MD5 f1209f88e723c6e643f5432f01f128fc
BLAKE2b-256 174b879b91825b0e7268e444f8348ae05b52688200638f02ea82b62a06a4dfbe

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c0e1a7b0eadbfe3789922ed98b8254b1e4754919a5ae212d4290a57da9b4ab8
MD5 40a0dfc67892dc3162520eac9481faa7
BLAKE2b-256 9462a0498550f40ef693a80e02520c84ddd9b553a6969061ae7bc52ffb5e95de

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 730a88060c597899ebb7a969f3765197f4195f2ca8b46280fdfaf807922cf11f
MD5 2256f0fb2b52478bdd0fdc03486884fe
BLAKE2b-256 9b93c83ba7bb6a1b40ed4a436873597d9b7702667d0d2dc3ec6c387199624cc2

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e24be8d10d95072381cd9437220c5e9fdb80ee672969c0f63fed73d2d2f8dca1
MD5 059d87f5d41244ba478a42f0ecaad55d
BLAKE2b-256 ef5f66e98b49720bf504c74c25826b34dbd490e97af06bdd42e21d5ecf5cb173

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6d4aa0595b352badf902886e3ee325a25f6bc5b16cdf16bfcb4226cc8aa11c61
MD5 89b227468de0105169c03d91a0bf646a
BLAKE2b-256 37290a58bb6c3e0ee67956f3f5f4b7b3c9162b2812e05c8cfd84b53e48d19c6a

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85ae0bcd4187e3b40549b63d4d3cdfd0167fb82e093980cb52f9a11232bdeb4f
MD5 64a7e9a78242dedbd99f0a4be88f17df
BLAKE2b-256 bc17234dabc8b7247cceaede1723429237ab4ee9afa83c843bbcb83e6ceab4cb

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7003917ec844d03dcef0c07b6263580eb70214cdd12fe1fa4b1b4b227813717d
MD5 7618df005a78448915208ec7df589d94
BLAKE2b-256 debad19930fc68e34db46c86da95fd5940b2397133217b83d9edf0f7313a170b

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6026d967f0f686bc20f7a06a5cb930da8a370a679f668f4ced0a5c3a267cea42
MD5 154b53f4fdd20f075227d603294591fa
BLAKE2b-256 3846f79f649b5fbecbf1f5d5b4bfc9066f38bff9b8e10ee3aaf82cf8a5d67a03

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 84a196f45ee68d9a098ce51bc19578734e7fde241b5463f3bdf7aa863b94f207
MD5 878dca51a50814354ca98b39f8ebcdb9
BLAKE2b-256 44a0ee4dc8cd3536eca392077f9c28e027a0aac8add4e94ac1b33f3981d803f2

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24d8b731c4906e458937f7c0580c8b81220dd1cebea3e26cc16daf9307576a35
MD5 916e521a291c657b5ebd1eb04aded18d
BLAKE2b-256 c01115eb8c2254a832e934530f8667cb660a978978f1b0a945b67b27adc107ae

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: MyGaiaDB-0.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 45.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for MyGaiaDB-0.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7f4a3b2724f36b3fcd805e8b09ed8293eb506a97304636b44d75bd5d46ae4290
MD5 5db959ecc26eea6c8fc05ba23f429168
BLAKE2b-256 2780ce777a11190e4338bc102e0a8862c83eff65ecd6a04a1aab4c0e2c4d2968

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50bd47e0c175d346e3af3acd6f197c2826c06b3bf76eaccfacebf79baa920930
MD5 35f16a756b257357d499b2a0d1143ddb
BLAKE2b-256 fd2430a189a38dc7c81ada64275bf81356f6dd6c43b5a62e2e39ee82c0fb1eed

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4998d0b0f2a5867137e52dbf7f818aa44a70191a68bb571b7bb1130ea0fb84ce
MD5 091b5ab88e75d6146628fd437899a078
BLAKE2b-256 25adbb6e252481b2d7536b77022d7429c1c30edc1f0f7f21fefa5496564bd335

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eaeabf64493a72020595ec01cc18fdc4e329dcd948b04aedc88d4a5b18f81441
MD5 5fbcb2ad71d683c5bffb6d95d28f1d17
BLAKE2b-256 a73ddfffffc47029240e8f7f5dc12d9c08c1a7f75ada6b59df687d06ec7b1137

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: MyGaiaDB-0.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 45.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for MyGaiaDB-0.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 30258dd190c2d5c30c525feacf9ae289160b4b60824abbbba9a487c8d1796693
MD5 b12e33821a2e5eb83d80b87276690179
BLAKE2b-256 a6f381219dbcac862e32dbdb4bd181a8b7786d77342102d626ba2c46d054087b

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79098678d0ceac86b6c085e8f6db5fece66aaac578f5b36d7686c7c96096c45c
MD5 2b0c1a200ae7caf562d3bf2cbcf27da8
BLAKE2b-256 be27352c5d75405c2e60887ca872a841e8af358d3009f8ca6cae21b25d7f94d0

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b6d2284845fe093258fd1f4f23b7f5f7ecbd96791e990505e63a7d3da041684
MD5 65180f07781938dd6e0af9c539f56f3e
BLAKE2b-256 6483082548172e83983d892e8b9607d549c273289420e5c9688c844f1467ed1a

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5ab0a946374443539a67b8f939a4f78862fb2b8be3cb01dabd89a5bb7282496
MD5 3da95fb16da6f59c15d4a88eaf6268ab
BLAKE2b-256 95b1ed815023d4fda815ffb067ce80afc47146b73878e070b48ae8d505c838d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page