Skip to main content

Automates machine learning model construction for materials science via NJmatML. Please check https://github.com/Zhang-NJ-Lab/NJmatML-Functions/blob/main/define.ipynb

Project description

定义了一些函数用于机器学习建模. The test dataset is photocurrent voltages for surface modified halide perovksite films in water (or formation energy). file_name('train1.csv') hist() heatmap_before() feature_select(23,0) #第一个为剩的特征个数,第二个一般都为0 heatmap_afterRFE() FeatureImportance_before(80,8,10,4) #rotation=80, fontsize=8, figure_size_xaxis=10,figure_size_yaxis=4 FeatureImportance_afterRFE(80,12,5,4) #rotation=80, fontsize=12, figure_size_xaxis=5,figure_size_yaxis=4 xgboost_default() xgboost_modify(1000,200,0.2,0,0.9,0.8,0.2)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

NJmatML-0.0.5-py3-none-any.whl (11.0 kB view details)

Uploaded Python 3

File details

Details for the file NJmatML-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: NJmatML-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 11.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.8

File hashes

Hashes for NJmatML-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 dc148abe9d5a53b877b3c39781dd991f53209b989e690f9af33ac60cc75b8bed
MD5 ac3717851773200c9b6218d9102cf9f3
BLAKE2b-256 eedca7650bfdc422c3e64a8fea73469f77206baff9b87679ab950ced3dc9be4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page