Skip to main content

Nearest Neighbor Density Estimation

Project description

Nearest Neighbor Density Estimation (NNDensity)

The package implements six nearest neighbor based density estimation method and provides efficient tools for density estimation research. See paper/paper.md for more descriptions and details in methodology and literature.

Contents

Installation

Since NNDensity is based on Cython, installation requires c/c++ compiler. Users can check by

gcc -v
g++ -v

to see their version. For Linux, users can install gcc/g++ by apt. For macOS, refer to Xcode. For Windows, refer to Microsoft c++ building tools.

Via PypI

pip install NNDensity

Via GitHub

pip install git+https://github.com/Karlmyh/NNDensity.git

Mannul Install

git clone git@github.com:Karlmyh/NNDensity.git
cd NNDensity 
python setup.py install

Basic Usage

Data Generation

Density generation tools. Below is a show case using a mixture distribution.

from NNDensity import MultivariateNormalDistribution, MixedDistribution, ExponentialDistribution
# setup
dim=2
density1 = ExponentialDistribution(lamda = np.ones(dim)*0.5) 
density2 = MultivariateNormalDistribution(mean = np.zeros(dim)-1.5, cov = np.diag(np.ones(dim)*0.3)) 
density_seq = [density1, density2]
prob_seq = [0.4, 0.6]
densitymix = MixedDistribution(density_seq, prob_seq)

# generate 10 samples and return their pdf
samples, samples_pdf = densitymix.generate(10)
samples

# evaluate pdf at given samples
densitymix.density(samples)

# compare with true pdf
(samples_pdf == samples).all()
Out[1]:  array([[-2.23087816, -1.08521314],
       [-1.03424594, -1.24327987],
       [-2.02698363, -1.63201056],
       [ 1.43021832,  1.51448518],
       [ 1.58820377,  1.8541296 ],
       [-0.88802267, -2.398429  ],
       [-1.26067249, -2.12988644],
       [-1.92476226, -2.0167295 ],
       [-2.0035588 , -1.35662414],
       [-1.46406062, -1.9693262 ]])
Out[2]: True

Density Estimation

Adopt AWNN model to estimate the density.

###### using AWNN to estimate density
from NNDensity import AWNN

# generate samples
X_train, pdf_X_train =densitymix.generate(1000)
X_test, pdf_X_test =densitymix.generate(1000)

# choose parameter C=0.1
model_AWNN=AWNN(C=.1).fit(X_train)
# output is log scaled
est_AWNN=np.exp(model_AWNN.predict(X_test))
# compute the mean absolute error
np.abs(est_AWNN-pdf_X_test).mean()
Out[3]:  0.09148487940943466

Automatically select parameter using GridSearchCV to improve result.

from sklearn.model_selection import GridSearchCV

# generate samples
X_train, pdf_X_train =densitymix.generate(1000)
X_test, pdf_X_test =densitymix.generate(1000)

# select parameter grid
parameters={"k":[int(i*1000) for i in [0.01,0.02,0.05,0.1,0.2,0.5]]}
# use all available cpu, use 10 fold cross validation
cv_model_KNN=GridSearchCV(estimator=KNN(),param_grid=parameters,n_jobs=-1,cv=10)
_=cv_model_KNN.fit(X_train)
model_KNN=cv_model_KNN.best_estimator_
    
# output is log scaled
est_KNN=np.exp(model_KNN.predict(X_test))
# compute the mean absolute error
np.abs(est_KNN-pdf_X_test).mean()
Out[4]:  0.055937476261628344

Visualization

Frequently used visualization plots for density estimation research.

###### 3d prediction surface using WKNN
from NNDensity import contour3d

# generate samples
dim=2
density1 = MultivariateNormalDistribution(mean = np.zeros(dim)+1.5, cov = np.diag(np.ones(dim)*0.4)) 
density2 = MultivariateNormalDistribution(mean = np.zeros(dim)-1.5, cov = np.diag(np.ones(dim)*0.7)) 
density_seq = [density1, density2]
prob_seq = [0.4, 0.6]
densitymix = MixedDistribution(density_seq, prob_seq)
X_train, pdf_X_train =densitymix.generate(1000)

model_plot=contour3d(X_train,method="WKNN",k=100)
model_plot.estimation()
fig=model_plot.make_plot()
###### 2d prediction contour using BKNN

from NNDensity import contour2d
from sklearn.model_selection import GridSearchCV

# generate samples
X_train, pdf_X_train =densitymix.generate(1000)

model_plot=contour2d(X_train,method="BKNN",C=10)
model_plot.estimation()
fig=model_plot.make_plot()
###### prediction curve plot

# generate samples
X_train, pdf_X_train =densitymix.generate(1000)


kargs_seq= [{"k":100},{"k":100},{"k":100} ]
model_plot=lineplot(X_train,method_seq=["KNN", "WKNN", "TKNN"],true_density_obj=densitymix,kargs_seq=kargs_seq)
fig=model_plot.plot()

kargs_seq= [{"C":0.9},{"C":1},{"C":1} ]
model_plot=lineplot(X_train,method_seq=["AKNN", "BKNN", "AWNN"],true_density_obj=densitymix,kargs_seq=kargs_seq)
fig=model_plot.plot()

Reference

NNDensity utilizes tools from numpy, matplotlib, scipy, jupyter notebooks, scikit-learn, cython and numba. Also, large part of KD tree implementation was borrowed from scikit-learn. For specific citations, see papers/paper.md.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NNDensity-0.0.2.linux-x86_64.tar.gz (175.7 kB view details)

Uploaded Source

File details

Details for the file NNDensity-0.0.2.linux-x86_64.tar.gz.

File metadata

File hashes

Hashes for NNDensity-0.0.2.linux-x86_64.tar.gz
Algorithm Hash digest
SHA256 a16168e9bdeee81b726c20e8580040e91fc2a6880dda33076b043067ad905798
MD5 c3367fe8777ada369cccd5242111a353
BLAKE2b-256 c7f3d76de60056dfe028e17b4e1802dab81f703593fb78135775dcf6d1966ed9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page