Skip to main content

A Multilayered Perceptron Nueral Network Implemented In Python & Numpy

Project description

Multilayered Perceptron By Pranav Sai:

#Network 2=InputSize,3=HiddenSize, 1=OutputSize

net=Network(2,3,1)

#Traning Data : training_inputs= hours slept,hours studied ; training_outputs= Grade of Test training_inputs = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)

training_outputs = np.array(([92], [86], [89]), dtype=float)

net.train(training_inputs,training_outputs,1000)

print(“Predicted Output: “ + str(net.run([2,3])))

CHANGELOG

0.0.1(2/27/2022)

-First Release: Multilayered Perception

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NeuNetMlp-0.0.4.tar.gz (3.0 kB view details)

Uploaded Source

File details

Details for the file NeuNetMlp-0.0.4.tar.gz.

File metadata

  • Download URL: NeuNetMlp-0.0.4.tar.gz
  • Upload date:
  • Size: 3.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/30.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.2.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.10.0

File hashes

Hashes for NeuNetMlp-0.0.4.tar.gz
Algorithm Hash digest
SHA256 8aff90569a87fa7f94d3267e5cdf0706690394583e87e03df6dac65434c282b6
MD5 c36a8fa7ceff830aae8b56f5243e47f1
BLAKE2b-256 5e3e80ad82487bc260bc065de2f151da3961e643b722b8c390b07f1d23952b63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page