Skip to main content

Python package for soft sensing applications

Project description

OpenMEASURE

OpenMEASURE is an open source software for soft sensing applications.

Installation

Run the following command to install:

pip install openmeasure

The following packages will be installed:

  • Numpy >= 1.19
  • Scipy >= 1.5
  • Gpytorch >= 1.5.1
  • Cvxpy >= 1.1.3
  • Openmdao >= 3.25.0
  • Pyvista >= 0.41.1

Techniques

  • Dimensionality reduction (POD and constrained POD)

  • Reduced Order Model via GPR

  • Sparse sensing:

    • Optimal sensor placement (QR decomposition and Greedy Entropy Maximization)
    • Sparse placement for reconstruction (OLS and COLS methods)
  • Multifidelity models with Co-Kriging

  • Utilities for Computed Tomography of Chemiluminescence

Usage

import numpy as np
from gpr import GPR
from sparse_sensing import SPR
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.tri as tri

# Replace this with the path where you saved the data directory
path = './data/ROM/'

# This is a n x m matrix where n = 165258 is the number of cells times the number of features
# and m = 41 is the number of simulations.
X_train = np.load(path + 'X_2D_train.npy')

# This is a n x 4 matrix containing the 4 testing simulations
X_test = np.load(path + 'X_2D_test.npy')

features = ['T', 'CH4', 'O2', 'CO2', 'H2O', 'H2', 'OH', 'CO', 'NOx']
n_features = len(features)

# This is the file containing the x,z positions of the cells
xz = np.load(path + 'xz.npy')
n_cells = xz.shape[0]

# Create the x,y,z array
xyz = np.zeros((n_cells, 3))
xyz[:,0] = xz[:,0]
xyz[:,2] = xz[:,1]

# This reads the files containing the parameters (D, H2, phi) with which 
# the simulation were computed
P_train = np.genfromtxt(path + 'parameters_train.csv', delimiter=',', skip_header=1)
P_test = np.genfromtxt(path + 'parameters_test.csv', delimiter=',', skip_header=1)

# Load the outline the mesh (for plotting)
mesh_outline = np.genfromtxt(path + 'mesh_outline.csv', delimiter=',', skip_header=1)

#---------------------------------Plotting utilities--------------------------------------------------
def sample_cmap(x):
    return plt.cm.jet((np.clip(x,0,1)))

def plot_sensors(xz_sensors, features, mesh_outline):
    fig, ax = plt.subplots(figsize=(4, 4))
    ax.plot(mesh_outline[:,0], mesh_outline[:,1], c='k', lw=0.5, zorder=1)
    
    features_unique = np.unique(xz_sensors[:,2])
    colors = np.zeros((features_unique.size,4))
    for i in range(colors.shape[0]):
        colors[i,:] = sample_cmap(features_unique[i]/len(features))
        
    for i, f in enumerate(features_unique):
        mask = xz_sensors[:,2] == f
        ax.scatter(xz_sensors[:,0][mask], xz_sensors[:,1][mask], color=colors[i,:], 
                   marker='x', s=15, lw=0.5, label=features[int(f)], zorder=2)

    
    ax.set_xlabel('$x (\mathrm{m})$', fontsize=8)
    ax.set_ylabel('$z (\mathrm{m})$', fontsize=8)
    eps = 1e-2
    ax.set_xlim(-eps, 0.35)
    ax.set_ylim(-0.15,0.7+eps)
    ax.set_aspect('equal')
    ax.legend(fontsize=8, frameon=False, loc='center right')
    ax.xaxis.tick_top()
    ax.xaxis.set_label_position('top')
    wid = 0.3
    ax.xaxis.set_tick_params(width=wid)
    ax.yaxis.set_tick_params(width=wid)
    ax.set_xticks([0., 0.18, 0.35])
    ax.tick_params(axis='both', which='major', labelsize=8)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    
    plt.show()

def plot_contours_tri(x, y, zs, cbar_label=''):
    triang = tri.Triangulation(x, y)
    triang_mirror = tri.Triangulation(-x, y)

    fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(6,6))
    
    z_min = np.min(zs)
    z_max = np.max(zs)
   
    n_levels = 12
    levels = np.linspace(z_min, z_max, n_levels)
    cmap_name= 'inferno'
    titles=['Original CFD','Predicted']
    
    for i, ax in enumerate(axs):
        if i == 0:
            ax.tricontourf(triang_mirror, zs[i], levels, vmin=z_min, vmax=z_max, cmap=cmap_name)
        else:
            ax.tricontourf(triang, zs[i], levels, vmin=z_min, vmax=z_max, cmap=cmap_name)
            ax.tick_params(axis='y', which='both', left=False, right=False, labelleft=False) 
        
        ax.set_aspect('equal')
        ax.set_title(titles[i])
        ax.set_xlabel('$x (\mathrm{m})$')
        if i == 0:
            ax.set_ylabel('$z (\mathrm{m})$')
    
    fig.subplots_adjust(bottom=0., top=1., left=0., right=0.85, wspace=0.02, hspace=0.02)
    start = axs[1].get_position().bounds[1]
    height = axs[1].get_position().bounds[3]
    
    cb_ax = fig.add_axes([0.9, start, 0.05, height])
    cmap = mpl.cm.get_cmap(cmap_name, n_levels)
    norm = mpl.colors.Normalize(vmin=z_min, vmax=z_max)
    
    fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cb_ax, 
                orientation='vertical', label=cbar_label)
    
    plt.show()

#---------------------------------Sparse sensing--------------------------------------------------

spr = SPR(X_train, n_features, xyz) # Create the spr object

# Compute the optimal measurement matrix using qr decomposition
n_sensors = 14
C_qr = spr.optimal_placement(select_modes='number', n_modes=n_sensors)

# Get the sensors positions and features
xz_sensors = np.zeros((n_sensors, 4))
for i in range(n_sensors):
    index = np.argmax(C_qr[i,:])
    xz_sensors[i,:2] = xz[index % n_cells, :]
    xz_sensors[i,2] = index // n_cells

plot_sensors(xz_sensors, features, mesh_outline)

# Sample a test simulation using the optimal qr matrix
y_qr = np.ones((n_sensors,3))
y_qr[:,0] = C_qr @ X_test[:,3]

for i in range(n_sensors):
    y_qr[i,2] = np.argmax(C_qr[i,:]) // n_cells

# Fit the model and predict the low-dim vector (ap) and the high-dim solution (xp)
spr.fit(C_qr)
ap, sigmap = spr.predict(y_qr)
xp = spr.reconstruct(ap)

# Select the feature to plot
str_ind = 'T'
ind = features.index(str_ind)

plot_contours_tri(xz[:,0], xz[:,1], [X_test[ind*n_cells:(ind+1)*n_cells, 3], 
                xp[ind*n_cells:(ind+1)*n_cells, 0]], cbar_label=str_ind)

#------------------------------------GPR ROM--------------------------------------------------
# Create the gpr object
gpr = GPR(X_train, n_features, xyz, P_train)

# Calculates the POD coefficients ap and the uncertainty for the test simulations
model, lh = gpr.fit(verbose=True)
Ap, Sigmap = gpr.predict(P_test)

# Reconstruct the high-dimensional state from the POD coefficients
Xp = gpr.reconstruct(Ap)

# Select the feature to plot
str_ind = 'OH'
ind = features.index(str_ind)

x_test = X_test[ind*n_cells:(ind+1)*n_cells,3]
xp_test = Xp[ind*n_cells:(ind+1)*n_cells, 3]

plot_contours_tri(xz[:,0], xz[:,1], [x_test, xp_test], cbar_label=str_ind)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

OpenMEASURE-0.3.4.tar.gz (27.6 kB view details)

Uploaded Source

Built Distribution

OpenMEASURE-0.3.4-py3-none-any.whl (30.3 kB view details)

Uploaded Python 3

File details

Details for the file OpenMEASURE-0.3.4.tar.gz.

File metadata

  • Download URL: OpenMEASURE-0.3.4.tar.gz
  • Upload date:
  • Size: 27.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for OpenMEASURE-0.3.4.tar.gz
Algorithm Hash digest
SHA256 4f0280df8655c2a5b0254bfcc5cfe57aafa292666cd51f52ab758e27f9b43c55
MD5 71d26b2ea39c61f5023689d96b371fc5
BLAKE2b-256 41ef651415b058a2bb325240c5e42c7b69a585869c7bbf436527f7a2f4a8f0ff

See more details on using hashes here.

File details

Details for the file OpenMEASURE-0.3.4-py3-none-any.whl.

File metadata

  • Download URL: OpenMEASURE-0.3.4-py3-none-any.whl
  • Upload date:
  • Size: 30.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for OpenMEASURE-0.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 9748e902920f01de71167c87c2c9c25fcc3870c5040cd911b084188bf9d52170
MD5 813b773e61eb3f514f9f95c8aa0d3851
BLAKE2b-256 d42e12212011f087d4d950f751a7929775502c7a97afee63d7fc7252787593c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page