Skip to main content

Python package for soft sensing applications

Project description

OpenMEASURE

OpenMEASURE is an open source software for soft sensing applications.

Installation

Run the following command to install:

pip install openmeasure

The following packages will be installed:

  • Numpy >= 1.19
  • Scipy >= 1.5
  • Gpytorch >= 1.5.1
  • Cvxpy >= 1.1.3
  • Openmdao >= 3.25.0
  • Pyvista >= 0.41.1

Techniques

  • Dimensionality reduction (POD and constrained POD)

  • Reduced Order Model via GPR

  • Sparse sensing:

    • Optimal sensor placement (QR decomposition and Greedy Entropy Maximization)
    • Sparse placement for reconstruction (OLS and COLS methods)
  • Multifidelity models with Co-Kriging

  • Utilities for Computed Tomography of Chemiluminescence

Usage

import numpy as np
from openmeasure.gpr import GPR
from openmeasure.sparse_sensing import SPR
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.tri as tri

# Replace this with the path where you saved the data directory
path = './data/ROM/'

# This is a n x m matrix where n = 165258 is the number of cells times the number of features
# and m = 41 is the number of simulations.
X_train = np.load(path + 'X_2D_train.npy')

# This is a n x 4 matrix containing the 4 testing simulations
X_test = np.load(path + 'X_2D_test.npy')

features = ['T', 'CH4', 'O2', 'CO2', 'H2O', 'H2', 'OH', 'CO', 'NOx']
n_features = len(features)

# This is the file containing the x,z positions of the cells
xz = np.load(path + 'xz.npy')
n_cells = xz.shape[0]

# Create the x,y,z array
xyz = np.zeros((n_cells, 3))
xyz[:,0] = xz[:,0]
xyz[:,2] = xz[:,1]

# This reads the files containing the parameters (D, H2, phi) with which 
# the simulation were computed
P_train = np.genfromtxt(path + 'parameters_train.csv', delimiter=',', skip_header=1)
P_test = np.genfromtxt(path + 'parameters_test.csv', delimiter=',', skip_header=1)

# Load the outline the mesh (for plotting)
mesh_outline = np.genfromtxt(path + 'mesh_outline.csv', delimiter=',', skip_header=1)

#---------------------------------Plotting utilities--------------------------------------------------
def sample_cmap(x):
    return plt.cm.jet((np.clip(x,0,1)))

def plot_sensors(xz_sensors, features, mesh_outline):
    fig, ax = plt.subplots(figsize=(4, 4))
    ax.plot(mesh_outline[:,0], mesh_outline[:,1], c='k', lw=0.5, zorder=1)
    
    features_unique = np.unique(xz_sensors[:,2])
    colors = np.zeros((features_unique.size,4))
    for i in range(colors.shape[0]):
        colors[i,:] = sample_cmap(features_unique[i]/len(features))
        
    for i, f in enumerate(features_unique):
        mask = xz_sensors[:,2] == f
        ax.scatter(xz_sensors[:,0][mask], xz_sensors[:,1][mask], color=colors[i,:], 
                   marker='x', s=15, lw=0.5, label=features[int(f)], zorder=2)

    
    ax.set_xlabel('$x (\mathrm{m})$', fontsize=8)
    ax.set_ylabel('$z (\mathrm{m})$', fontsize=8)
    eps = 1e-2
    ax.set_xlim(-eps, 0.35)
    ax.set_ylim(-0.15,0.7+eps)
    ax.set_aspect('equal')
    ax.legend(fontsize=8, frameon=False, loc='center right')
    ax.xaxis.tick_top()
    ax.xaxis.set_label_position('top')
    wid = 0.3
    ax.xaxis.set_tick_params(width=wid)
    ax.yaxis.set_tick_params(width=wid)
    ax.set_xticks([0., 0.18, 0.35])
    ax.tick_params(axis='both', which='major', labelsize=8)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    
    plt.show()

def plot_contours_tri(x, y, zs, cbar_label=''):
    triang = tri.Triangulation(x, y)
    triang_mirror = tri.Triangulation(-x, y)

    fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(6,6))
    
    z_min = np.min(zs)
    z_max = np.max(zs)
   
    n_levels = 12
    levels = np.linspace(z_min, z_max, n_levels)
    cmap_name= 'inferno'
    titles=['Original CFD','Predicted']
    
    for i, ax in enumerate(axs):
        if i == 0:
            ax.tricontourf(triang_mirror, zs[i], levels, vmin=z_min, vmax=z_max, cmap=cmap_name)
        else:
            ax.tricontourf(triang, zs[i], levels, vmin=z_min, vmax=z_max, cmap=cmap_name)
            ax.tick_params(axis='y', which='both', left=False, right=False, labelleft=False) 
        
        ax.set_aspect('equal')
        ax.set_title(titles[i])
        ax.set_xlabel('$x (\mathrm{m})$')
        if i == 0:
            ax.set_ylabel('$z (\mathrm{m})$')
    
    fig.subplots_adjust(bottom=0., top=1., left=0., right=0.85, wspace=0.02, hspace=0.02)
    start = axs[1].get_position().bounds[1]
    height = axs[1].get_position().bounds[3]
    
    cb_ax = fig.add_axes([0.9, start, 0.05, height])
    cmap = mpl.colormaps[cmap_name]
    norm = mpl.colors.Normalize(vmin=z_min, vmax=z_max)
    
    fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cb_ax, 
                orientation='vertical', label=cbar_label)
    
    plt.show()

#---------------------------------Sparse sensing--------------------------------------------------

spr = SPR(X_train, n_features, xyz) # Create the spr object

# Compute the optimal measurement matrix using qr decomposition
n_sensors = 14
spr.fit(select_modes='number', n_modes=n_sensors)
C_qr = spr.optimal_placement()

# Get the sensors positions and features
xz_sensors = np.zeros((n_sensors, 4))
for i in range(n_sensors):
    index = np.argmax(C_qr[i,:])
    xz_sensors[i,:2] = xz[index % n_cells, :]
    xz_sensors[i,2] = index // n_cells

plot_sensors(xz_sensors, features, mesh_outline)

# Sample a test simulation using the optimal qr matrix
y_qr = np.ones((n_sensors,3))
y_qr[:,0] = C_qr @ X_test[:,3]

for i in range(n_sensors):
    y_qr[i,2] = np.argmax(C_qr[i,:]) // n_cells

# Fit the model and predict the low-dim vector (ap) and the high-dim solution (xp)
spr.train(C_qr)
ap, sigmap = spr.predict(y_qr)
xp = spr.reconstruct(ap)

# Select the feature to plot
str_ind = 'T'
ind = features.index(str_ind)

plot_contours_tri(xz[:,0], xz[:,1], [X_test[ind*n_cells:(ind+1)*n_cells, 3], 
                xp[ind*n_cells:(ind+1)*n_cells, 0]], cbar_label=str_ind)

#------------------------------------GPR ROM--------------------------------------------------
# Create the gpr object
gpr = GPR(X_train, n_features, xyz, P_train)
gpr.fit()

# Calculates the POD coefficients ap and the uncertainty for the test simulations
model, lh = gpr.train(verbose=True)
Ap, Sigmap = gpr.predict(P_test)

# Reconstruct the high-dimensional state from the POD coefficients
Xp = gpr.reconstruct(Ap)

# Select the feature to plot
str_ind = 'OH'
ind = features.index(str_ind)

x_test = X_test[ind*n_cells:(ind+1)*n_cells,3]
xp_test = Xp[ind*n_cells:(ind+1)*n_cells, 3]

plot_contours_tri(xz[:,0], xz[:,1], [x_test, xp_test], cbar_label=str_ind)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

OpenMEASURE-0.4.0-py3-none-any.whl (28.9 kB view details)

Uploaded Python 3

File details

Details for the file OpenMEASURE-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: OpenMEASURE-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 28.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.8

File hashes

Hashes for OpenMEASURE-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 04e949dd66b5ca9ece460c95dcc66f239f294d2021bc2b436ac4899e907e4b2d
MD5 ded1bc35fa1dbd29e76a682e09ffbab0
BLAKE2b-256 2e5ef6e041d338600ba939a687d97a73eef20dd59e283d8cea1a7b3e93d596c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page