Skip to main content

OpenNIR: A Complete Neural Ad-Hoc Ranking Pipeline (Experimaestro version)

Project description

OpenNIR (experimaestro version)

OpenNIR-xpm is an end-to-end neural ad-hoc ranking pipeline.

This is an adaptation of OpenNIR using experiment manager tools (experimaestro and datamaestro).

Quick start

This is an example for training

import logging
import os
from pathlib import Path

from datamaestro import prepare_dataset
from experimaestro.click import click, forwardoption
from experimaestro import experiment
from onir.datasets.robust import RobustDataset
from onir.predictors.reranker import Reranker
from onir.random import Random
from onir.rankers.drmm import Drmm
from onir.tasks.learner import Learner
from onir.tasks.evaluate import Evaluate
from onir.trainers.pointwise import PointwiseTrainer
from onir.vocab.wordvec_vocab import WordvecUnkVocab

logging.basicConfig(level=logging.INFO)


# --- Defines the experiment

@forwardoption.max_epoch(Learner)
@click.option("--debug", is_flag=True, help="Print debug information")
@click.option("--port", type=int, default=12345, help="Port for monitoring")
@click.argument("workdir", type=Path)
@click.command()
def cli(port, workdir, debug, max_epoch):
    """Runs an experiment"""
    logging.getLogger().setLevel(logging.DEBUG if debug else logging.INFO)

    # Sets the working directory and the name of the xp
    with experiment(workdir, "drmm", port=port) as xp:
        random = Random()
        xp.setenv("JAVA_HOME", os.environ["JAVA_HOME"])

        # Prepare the collection
        wordembs = prepare_dataset("edu.stanford.glove.6b.50")        
        vocab = WordvecUnkVocab(data=wordembs, random=random)
        robust = RobustDataset.prepare().submit()

        # Train with OpenNIR DRMM model
        ranker = Drmm(vocab=vocab).tag("ranker", "drmm")
        predictor = Reranker()
        trainer = PointwiseTrainer()
        learner = Learner(trainer=trainer, random=random, ranker=ranker, valid_pred=predictor, 
            train_dataset=robust.subset('trf1'), val_dataset=robust.subset('vaf1'), max_epoch=max_epoch)
        model = learner.submit()

        # Evaluate
        Evaluate(dataset=robust.subset('f1'), model=model, predictor=predictor).submit()


if __name__ == "__main__":
    cli()

Features

The features below are from OpenNIR

Rankers

Available in the onir.rankers module

  • DRMM onir.rankers.drmm.Drmm paper
  • (planned) Duet (local model) paper
  • (planned) MatchPyramid paper
  • (planned) KNRM paper
  • (planned) PACRR paper
  • (planned) ConvKNRM paper
  • (planned) Vanilla BERT config/vanilla_bert paper
  • CEDR models onir.rankers.cedr_drmm.CedrDrmm paper
  • (planned) MatchZoo models source
  • (planned) MatchZoo's KNRM
  • (planned) MatchZoo's ConvKNRM

Datasets

Evaluation Metrics

  • map (from trec_eval)
  • ndcg (from trec_eval)
  • ndcg@X (from trec_eval, gdeval)
  • p@X (from trec_eval)
  • err@X (from gdeval)
  • mrr (from trec_eval)
  • rprec (from trec_eval)
  • judged@X (implemented in python)

Vocabularies

  • (planned) Binary term matching vocab=binary (i.e., changes interaction matrix from cosine similarity to to binary indicators)
  • Pretrained word vectors. Find the list with datamaestro search tag:"word embeddings"

Citing OpenNIR

If you use OpenNIR, please cite the real OpenNIR WSDM demonstration paper and look at acknowledgements of the original OpenNIR.

@InProceedings{macavaney:wsdm2020-onir,
  author = {MacAvaney, Sean},
  title = {{OpenNIR}: A Complete Neural Ad-Hoc Ranking Pipeline},
  booktitle = {{WSDM} 2020},
  year = {2020}
}

If you have space, you can also cite mine:

@inproceedings{10.1145/3397271.3401410,
author = {Piwowarski, Benjamin},
title = {Experimaestro and Datamaestro: Experiment and Dataset Managers (for IR)},
year = {2020},
doi = {10.1145/3397271.3401410},
booktitle = {Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval},
location = {Virtual Event, China},
series = {SIGIR ’20}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

OpenNIR_XPM-0.1.1-py3-none-any.whl (127.4 kB view details)

Uploaded Python 3

File details

Details for the file OpenNIR_XPM-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: OpenNIR_XPM-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 127.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.2

File hashes

Hashes for OpenNIR_XPM-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d996ce820264c2ed4fbb90d9c22fda39e6f0ff64c5b21cc544303e1a34fecacf
MD5 39cc02cea257af350347fd4691b9dd64
BLAKE2b-256 957c2858d82808a11ae242f2d8a7a673d1fecc7a69da3c8a511cb54554377ecb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page