Orange, a component-based data mining framework.
Project description
[![Join the chat at https://gitter.im/biolab/orange3](https://badges.gitter.im/biolab/orange3.svg)](https://gitter.im/biolab/orange3?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[![build: passing](https://img.shields.io/travis/biolab/orange3.svg)](https://travis-ci.org/biolab/orange3) [![codecov](https://codecov.io/gh/biolab/orange3/branch/master/graph/badge.svg)](https://codecov.io/gh/biolab/orange3)
[Orange] is a component-based data mining software. It includes a range of data visualization, exploration, preprocessing and modeling techniques. It can be used through a nice and intuitive user interface or, for more advanced users, as a module for the Python programming language.
This is a development version of Orange 3. The stable version 2.7 is still available ([binaries] and [sources]).
[Orange]: http://orange.biolab.si/ [binaries]: http://orange.biolab.si/orange2/ [sources]: https://github.com/biolab/orange
Installing
Orange requires Python 3.4 or newer. To build it and install it in a development environment, run:
# Install some build requirements via your system’s package manager sudo apt install virtualenv git build-essential python3-dev
# Create a separate Python environment for Orange and its dependencies … virtualenv –python=python3 –system-site-packages orange3venv # … and make it the active one source orange3venv/bin/activate
# Clone the repository and move into it git clone https://github.com/biolab/orange3.git cd orange3
# Install Qt dependencies for the GUI pip install PyQt5 # Of if Python <= 3.4 and/or with package manager # sudo apt install python3-pyqt4
# Install other minimum required dependencies pip install -r requirements-core.txt # For Orange Python library pip install -r requirements-gui.txt # For Orange GUI
pip install -r requirements-sql.txt # To use SQL support pip install -r requirements-opt.txt # Optional dependencies, may fail
# Finally install Orange in editable/development mode. pip install -e .
Installation of SciPy and qt-graph-helpers is sometimes challenging because of their non-python dependencies that have to be installed manually. More detailed, if mostly obsolete, guides for some platforms can be found in the [wiki].
Anaconda Installation
First, install [Anaconda] for your OS (Python version 3.5+). Create virtual environment for Orange:
conda create python=3 –name orange3
In your Anaconda Prompt add conda-forge to your channels:
conda config –add channels conda-forge
This will enable access to the latest Orange release. Then install Orange3:
conda install orange3
[Anaconda]: https://www.continuum.io/downloads
Starting Orange GUI
Orange GUI requires PyQt, which is not pip-installable in Python 3. You have to download and install it system-wide. Make sure that the virtual environment for orange is created with –system-site-packages, so it will have access to the installed PyQt4.
To start Orange GUI from the command line, assuming it was successfully installed, run:
orange-canvas # or python3 -m Orange.canvas
Append –help for a list of program options.
If you’re running Orange with PyQt5 or if you have multiple PyQt versions available, set the environmental variable QT_API to the PyQt version to use, e.g.:
export QT_API=pyqt5 orange-canvas
Compiling on Windows
Get appropriate wheels for missing libraries. You will need [numpy+mkl] and [scipy].
[numpy+mkl]: http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy [scipy]: http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
Install them with
pip install some-wheel.whl
Install [Visual Studio compiler]. Then go to Orange3 folder and run:
[Visual Studio compiler]: http://landinghub.visualstudio.com/visual-cpp-build-tools
python setup.py build_ext -i –compiler=msvc install
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for Orange3-3.13.0-cp36-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca0b9ddf11a0b36f36ed010ec4f7f938d5745db7f785a34af119115ef7aebc76 |
|
MD5 | 759a1fec180f0314ced414ce1a4bc97e |
|
BLAKE2b-256 | b5ce9ad89a948da0eb5085315905d59146365d179774b84d84b6d0b1e829e2ae |
Hashes for Orange3-3.13.0-cp36-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | de9452dd9b6ee374953f2b9e4b275d9d74c0dbb0c7217c6d99c1bd6e15348a6b |
|
MD5 | b1943c6842139bf9510369ff07817528 |
|
BLAKE2b-256 | 2cfbfe322cf3eddc8bd6e4bcf4625a7e2ad7497893201b2c7feb9534339efd6a |
Hashes for Orange3-3.13.0-cp36-cp36m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f3890173ee1ab92de7d839e2c9867eb05f1dbe1d0761611297b3d9d30ffaf16 |
|
MD5 | 87e6e9db154ed51e9356e3a012550f65 |
|
BLAKE2b-256 | d2a865bf3cd24304a78123c7b8d13de961bd4e4c3e7cce9b5ef8fe6154fbc5a6 |
Hashes for Orange3-3.13.0-cp35-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e625d75d9300d2577b00d3c2b289b12d033ce7074cbcbd3aa5b8637a63aa040b |
|
MD5 | 155441ab0878e059c32be1a80c16eef8 |
|
BLAKE2b-256 | 164ee203715ba5299c072330a662a7fca6bb074dc3aa2e0503397da86a3f6c73 |
Hashes for Orange3-3.13.0-cp35-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5c19d00878c1154e3866b1c2c615db2835e8218d768bb8af870a1357fdf5bdec |
|
MD5 | 37a43b103bcb00f62e4a28b22a9383a6 |
|
BLAKE2b-256 | 2fe338a2cae54632d32bdcc51465fdadcd9998d2e8c65692df9ad310d99f316e |
Hashes for Orange3-3.13.0-cp35-cp35m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 896c06776967a980527adedadb67b979add476284c7a3dda30f50df57c89c651 |
|
MD5 | c9f53054a4ffbfaf0164fc35ba489592 |
|
BLAKE2b-256 | 6f1d4eb99c8658ec2b5ea938b19ef4616bbb594ee5accf1bbd78bb7c141feb3a |
Hashes for Orange3-3.13.0-cp34-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b01fb2dded703a51d7501232a0cca1518526c79b39a5c58d2fa8424209b18a2 |
|
MD5 | acd3ad943b07837f5170ae05ad7c71ac |
|
BLAKE2b-256 | c28b6ee1715b808b0e802f8eb01f1e58e914ebdb72b8cf4ecd3db80db58152a2 |
Hashes for Orange3-3.13.0-cp34-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0908417a435a6438a6b3006f72cac58f64a4f44f8998b55e9eb70e8042f193d1 |
|
MD5 | 2460136b68e4ac3197d643628d99aead |
|
BLAKE2b-256 | 1aa79f0030b1dac229990f8ee02f388f897cf6a1e340c24fe3ae376a9e3c096b |
Hashes for Orange3-3.13.0-cp34-cp34m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73c61669bff844c34e1d6c6f84b30168465298d693433de0d6efb4ae3ca7d506 |
|
MD5 | fe3ff432de0365f4f761b595831ac219 |
|
BLAKE2b-256 | df6697485c93e4e1188830ee8278e55d8021d38ddce74abf39580e9416eec3d7 |