Periodic light curve analysis tools based on Information Theory
Project description
Description
P4J is a python package for period detection on irregularly sampled and heteroscedastic time series based on Information Theoretic objective functions. P4J was developed for astronomical light curves, irregularly sampled time series of stellar magnitude or flux. The core of this package is a class called periodogram that sweeps an array of periods/frequencies looking for the one that maximizes a given criteria. The main contribution of this work is a criterion for period detection based on the maximization of Cauchy-Schwarz Quadratic Mutual Information [1]. Information theoretic criteria incorporate information on the whole probability density function of the process and are more robust than classical second-order statistics based criteria [2, 3, 4]. For comparison P4J also incorporates other period detection methods used in astronomy such as the Phase Dispersion Minimization periodogram [5], Lafler-Kinman’s string length [6] and the Orthogonal multiharmonic AoV periodogram [7]
Contents
Quadratic Mutual Information periodogram for light curves
Phase Dispersion Minimization, Analysis of Variance and String Length methods
Basic synthetic light curve generator
Instalation
Dependencies
Numpy GCC Cython (optional)
If you have a UNIX system the GCC compiler is most likely already installed. If you have a Windows system you may want to install the Microsoft Visual C++ (MSVC) compiler. You can find relevant information at: https://wiki.python.org/moin/WindowsCompilers.
Note on Cython: If Cython is found in your system, pyx are compiled to c sources. If not the provided c sources are used.
Install from PyPI using
pip install P4J
or clone the github repository and do
python setup.py install --user
Example
https://github.com/phuijse/P4J/blob/master/examples/periodogram_demo.ipynb
TODO
Multidimensional time series support
More period detection criteria (Conditional Entropy)
Authors
Pablo Huijse pablo.huijse@gmail.com (Millennium Institute of Astrophysics and Universidad de Chile)
Pavlos Protopapas (Harvard Institute of Applied Computational Sciences)
Pablo A. Estévez (Millennium Institute of Astrophysics and Universidad de Chile)
Pablo Zegers (Universidad de los Andes, Chile)
José C. Príncipe (University of Florida)
(P4J = Four Pablos and one Jose)
References
José C. Príncipe, “Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives”, Springer, 2010
Pavlos Protopapas et al., “A Novel, Fully Automated Pipeline for Period Estimation in the EROS 2 Data Set”, The Astrophysical Journal Supplement, vol. 216, n. 2, 2015
Pablo Huijse et al., “Computational Intelligence Challenges and Applications on Large-Scale Astronomical Time Series Databases”, IEEE Mag. Computational Intelligence, vol. 9, n. 3, pp. 27-39, 2014
Pablo Huijse et al., “An Information Theoretic Algorithm for Finding Periodicities in Stellar Light Curves”, IEEE Trans. Signal Processing vol. 60, n. 10, pp. 5135-5145, 2012
R. F. Stellingwerf, “Period determination using phase dispersion minimization”, The Astrophysical Journal, vol. 224, pp. 953-960, 1978
D. Clarke, “String/Rope length methods using the Lafler-Kinman statistic”, Astronomy & Astrophysics, vol. 386, n. 2, pp. 763-774, 2002
A. Schwarzenberg-Czerny “Fast and Statistically Optimal Period Search in Uneven Sampled Observations”, Astrophysical Journal Letters, vol. 460, pp. 107, 1996
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file P4J-0.27.tar.gz
.
File metadata
- Download URL: P4J-0.27.tar.gz
- Upload date:
- Size: 510.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b6dbb728fbe8f9a363db6ad4577b50799e098c9327cc6c81cd6c07c01772be6 |
|
MD5 | e67408dfd09d968a1dc5180e88b04304 |
|
BLAKE2b-256 | acb541aaca8941ac9ff2832c2bb7116780bed853060f1d9dca8a73cc015fa2be |