Skip to main content

Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Project description

PACMAN

A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Requires Python 3.9 Zenodo MIT Gmail Linux Windows

Usage

from PACMANCharge import pmcharge
PACMaN.predict(cif_file="./test/Cu-BTC.cif",charge_type="DDEC6",digits=6,atom_type=False,neutral=False)
  • cif_file: cif file (without partial atomic charges) [cif path]
  • charge-type (default: DDE6): DDEC6, Bader or CM5
  • digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
  • atom-type (default: False): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
  • neutral (default: False): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.

Website & Zenodo

PACMAN-APPlink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.

Reference

If you use PACMAN Charge, please cite this paper:

@article{,
    title={PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials using Crystal Graph Convolution Network},
    journal={Journal of Chemical Theory and Computation},
    author={Zhao, Guobin and Chung, Yongchul},
    year={2024},
}

Bugs

If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com.

Group: Molecular Thermodynamics & Advance Processes Laboratory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PACMAN-charge-0.1.9.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

PACMAN_charge-0.1.9-py3-none-any.whl (15.7 kB view details)

Uploaded Python 3

File details

Details for the file PACMAN-charge-0.1.9.tar.gz.

File metadata

  • Download URL: PACMAN-charge-0.1.9.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN-charge-0.1.9.tar.gz
Algorithm Hash digest
SHA256 ed4d30ce18394e2fc44c3a610c11bf563408161bdf12cda973c6f1db163dc14c
MD5 80d784abc1ec53406af3feb559ec55e6
BLAKE2b-256 09e073a0148eb1229963e2f3cfe62f310306e94fb477e03eb78b6e2ac9bdc9c4

See more details on using hashes here.

Provenance

File details

Details for the file PACMAN_charge-0.1.9-py3-none-any.whl.

File metadata

  • Download URL: PACMAN_charge-0.1.9-py3-none-any.whl
  • Upload date:
  • Size: 15.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN_charge-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 c59c73c512fda9c552a436c9a7d736b17407e3985bc4ee351ca09b3c5c74b3c6
MD5 0e0a7ce8b3bfa1bedb05703225242b47
BLAKE2b-256 006360817a689f135d2813ca0c330db7423b75fb85faaaf9da2d02624d7c1da3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page