Skip to main content

Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Project description

PACMAN

A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Requires Python 3.9 Zenodo MIT Gmail Linux Windows

Usage

from PACMANCharge import pmcharge
PACMaN.predict(cif_file="./test/Cu-BTC.cif",charge_type="DDEC6",digits=6,atom_type=False,neutral=False)
  • cif_file: cif file (without partial atomic charges) [cif path]
  • charge-type (default: DDE6): DDEC6, Bader or CM5
  • digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
  • atom-type (default: False): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
  • neutral (default: False): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.

Website & Zenodo

PACMAN-APPlink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.

Reference

If you use PACMAN Charge, please cite this paper:

@article{,
    title={PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials using Crystal Graph Convolution Network},
    author={Zhao, Guobin and Chung, Yongchul},
    year={2024},
}

Bugs

If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com.

Group: Molecular Thermodynamics & Advance Processes Laboratory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PACMAN-charge-0.2.0.tar.gz (10.7 kB view details)

Uploaded Source

Built Distribution

PACMAN_charge-0.2.0-py3-none-any.whl (11.3 kB view details)

Uploaded Python 3

File details

Details for the file PACMAN-charge-0.2.0.tar.gz.

File metadata

  • Download URL: PACMAN-charge-0.2.0.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN-charge-0.2.0.tar.gz
Algorithm Hash digest
SHA256 a5c2721d424b95ddd303dfd9e81b08bbce2475ac2f1e4bbd36879909987c8be9
MD5 3cecbf3bc064514ebff19bc9c0e236af
BLAKE2b-256 51b03a3e80c70f91a947e45ce3cca1723f3c471290a5a9d53f6ce07b94f7b90b

See more details on using hashes here.

Provenance

File details

Details for the file PACMAN_charge-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: PACMAN_charge-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 11.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN_charge-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7da1b3912d9f43a205d496a621719f77886b1f2234100c7b73f8596eeeb926e4
MD5 59f7409497cfc55c45f4f8e1fc5729a1
BLAKE2b-256 9d3a57b6f446c3289d41d8f89cbef33024c4b24f41f27a97ff39906684635e56

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page