Skip to main content

Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Project description

PACMAN

A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Requires Python 3.9 Zenodo MIT Gmail Linux Windows

Usage

from PACMANCharge import pmcharge
pmcharge.predict(cif_file="./test/Cu-BTC.cif",charge_type="DDEC6",digits=6,atom_type=False,neutral=False)
pmcharge.Energy(cif_file="./test/Cu-BTC.cif")
  • cif_file: cif file (without partial atomic charges) [cif path]
  • charge-type (default: DDE6): DDEC6, Bader, CM5 or REPEAT
  • digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
  • atom-type (default: True): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
  • neutral (default: True): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.

Website & Zenodo

PACMAN-APPlink
github repositorylink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.

Reference

If you use PACMAN Charge, please cite this paper:

@article{doi:10.1021/acs.jctc.4c00434,
            author = {Zhao, Guobin and Chung, Yongchul G.},
            title = {PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials Based on Crystal Graph Convolution Networks},
            journal = {Journal of Chemical Theory and Computation},
            volume = {20},
            number = {12},
            pages = {5368-5380},
            year = {2024},
            doi = {10.1021/acs.jctc.4c00434},
                note ={PMID: 38822793},
            URL = { 
                    https://doi.org/10.1021/acs.jctc.4c00434
            },
            eprint = { 
                    https://doi.org/10.1021/acs.jctc.4c00434
                    }
}

Bugs

If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com.

Group: Molecular Thermodynamics & Advance Processes Laboratory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pacman_charge-1.1.3.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

PACMAN_charge-1.1.3-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file pacman_charge-1.1.3.tar.gz.

File metadata

  • Download URL: pacman_charge-1.1.3.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for pacman_charge-1.1.3.tar.gz
Algorithm Hash digest
SHA256 fe26c96853d747414bc1f1a57535c0ae5b8c42082ccbc9d0f9cd709cd4993846
MD5 08969214ee981d82388d6b87f285f537
BLAKE2b-256 f074f07c23072c1c7684e85bfa50d145945869c03b833a1340f292aab13861fe

See more details on using hashes here.

Provenance

File details

Details for the file PACMAN_charge-1.1.3-py3-none-any.whl.

File metadata

  • Download URL: PACMAN_charge-1.1.3-py3-none-any.whl
  • Upload date:
  • Size: 12.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN_charge-1.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 cc8666a61e2fee31eb9971a2809efb63f3ac70e8b4f58f73825c2553aab8d0d6
MD5 16585881143db49aa71146e034feedae
BLAKE2b-256 d5c2688c58d7ec46434e1693c2011a0e914f36dd6c70769a5485b7a2a85efe1b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page