Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)
Project description
PACMAN
A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)
Usage
from PACMANCharge import pmcharge
pmcharge.predict(cif_file="./test/Cu-BTC.cif",charge_type="DDEC6",digits=6,atom_type=False,neutral=False)
pmcharge.Energy(cif_file="./test/Cu-BTC.cif")
- cif_file: cif file (without partial atomic charges) [cif path]
- charge-type (default: DDE6): DDEC6, Bader, CM5 or REPEAT
- digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
- atom-type (default: True): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
- neutral (default: True): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.
Website & Zenodo
PACMAN-APPlink
github repositorylink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.
Reference
If you use PACMAN Charge, please cite this paper:
@article{doi:10.1021/acs.jctc.4c00434,
author = {Zhao, Guobin and Chung, Yongchul G.},
title = {PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials Based on Crystal Graph Convolution Networks},
journal = {Journal of Chemical Theory and Computation},
volume = {20},
number = {12},
pages = {5368-5380},
year = {2024},
doi = {10.1021/acs.jctc.4c00434},
note ={PMID: 38822793},
URL = {
https://doi.org/10.1021/acs.jctc.4c00434
},
eprint = {
https://doi.org/10.1021/acs.jctc.4c00434
}
}
Bugs
If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com
.
Group: Molecular Thermodynamics & Advance Processes Laboratory
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pacman_charge-1.1.3.tar.gz
(11.9 kB
view details)
Built Distribution
File details
Details for the file pacman_charge-1.1.3.tar.gz
.
File metadata
- Download URL: pacman_charge-1.1.3.tar.gz
- Upload date:
- Size: 11.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe26c96853d747414bc1f1a57535c0ae5b8c42082ccbc9d0f9cd709cd4993846 |
|
MD5 | 08969214ee981d82388d6b87f285f537 |
|
BLAKE2b-256 | f074f07c23072c1c7684e85bfa50d145945869c03b833a1340f292aab13861fe |
Provenance
File details
Details for the file PACMAN_charge-1.1.3-py3-none-any.whl
.
File metadata
- Download URL: PACMAN_charge-1.1.3-py3-none-any.whl
- Upload date:
- Size: 12.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc8666a61e2fee31eb9971a2809efb63f3ac70e8b4f58f73825c2553aab8d0d6 |
|
MD5 | 16585881143db49aa71146e034feedae |
|
BLAKE2b-256 | d5c2688c58d7ec46434e1693c2011a0e914f36dd6c70769a5485b7a2a85efe1b |