Skip to main content

Python Wrapper for ParallelDots APIs

Project description

A wrapper for the ParallelDots API.

Installation

>From PyPI:

pip install paralleldots

>From Source:

https://github.com/ParallelDots/ParallelDots-Python-API.git
python setup.py install

API Keys & Setup

Signup and get your free API key from ParallelDots. You will receive a mail containing the API key at the registered email id.

Configuration:

>>> from paralleldots import set_api_key, get_api_key

# Setting your API key
>>> set_api_key("YOUR API KEY")

# Viewing your API key
>>> get_api_key()

Supported APIs:

Examples

>>> from paralleldots import similarity, ner, taxonomy, sentiment, keywords, intent, emotion, multilang, abuse, sentiment_social

>>> similarity( "Sachin is the greatest batsman", "Tendulkar is the finest cricketer" )
{"actual_score": 0.842932,"normalized_score": 4.931469}

>>> sentiment( "Come on, lets play together" )
{"probabilities": {"positive": 0.568817, "neutral": 0.400776, "negative": 0.030407}, "sentiment": "positive"}

>>> taxonomy( "Narendra Modi is the prime minister of India" )
{"tag": "terrorism", "confidence_score": 0.531435}, {"tag": "world politics", "confidence_score": 0.391963}, {"tag": "politics", "confidence_score": 0.358955}, {"tag": "religion", "confidence_score": 0.308195}, {"tag": "defense", "confidence_score": 0.26187}, {"tag": "business", "confidence_score": 0.20885}, {"tag": "entrepreneurship", "confidence_score": 0.18349}, {"tag": "health", "confidence_score": 0.171121}, {"tag": "technology", "confidence_score": 0.168591}, {"tag": "law", "confidence_score": 0.156953}, {"tag": "education", "confidence_score": 0.146511}, {"tag": "science", "confidence_score": 0.101002}, {"tag": "crime", "confidence_score": 0.085016}, {"tag": "entertainment", "confidence_score": 0.080634}, {"tag": "environment", "confidence_score": 0.078024}, {"tag": "disaster", "confidence_score": 0.075295}, {"tag": "weather", "confidence_score": 0.06784}, {"tag": "accident", "confidence_score": 0.066831}, {"tag": "sports", "confidence_score": 0.058329}, {"tag": "advertising", "confidence_score": 0.054868}, {"tag": "history", "confidence_score": 0.043581}, {"tag": "mining", "confidence_score": 0.03833}, {"tag": "travel", "confidence_score": 0.025517}, {"tag": "geography", "confidence_score": 0.022372}, {"tag": "nature", "confidence_score": 0.013477}, {"tag": "lifestyle", "confidence_score": 0.006467}, {"tag": "automobile", "confidence_score": 0.001161}, {"tag": "personal care", "confidence_score": 0.000275}]}

>>> ner( "Narendra Modi is the prime minister of India" )
{"entities": [
        {
                "category": "name",
                "name": "Narendra Modi",
                "confidence_score": 0.951439
        },
        {
                "category": "place",
                "name": "India",
                "confidence_score": 0.9263
        }
]}

>>> keywords( "Prime Minister Narendra Modi tweeted a link to the speech Human Resource Development Minister Smriti Irani made in the Lok Sabha during the debate on the ongoing JNU row and the suicide of Dalit scholar Rohith Vemula at the Hyderabad Central University." )
[{"relevance_score": 4, "keyword": "Prime Minister Narendra Modi"}, {"relevance_score": 1, "keyword": "link"}, {"relevance_score": 3, "keyword": "speech Human Resource"}, {"relevance_score": 1, "keyword": "Smriti"}, {"relevance_score": 1, "keyword": "Lok"}]

>>> emotion("Did you hear the latest Porcupine Tree song ? It's rocking !")
{"emotion": "other", "probabilities": {"angry": 0.010629, "other": 0.453988, "sad": 0.028748, "excited": 0.2596, "happy": 0.247035}
>>> intent("Finance ministry calls banks to discuss new facility to drain cash")
{"probabilities": {"news": 0.946028, "other": 0.015853, "query": 0.000412, "feedback/opinion": 0.014115, "spam": 0.023591}}

>>> multilang("Me encanta jugar al baloncesto", "es")   # The text is encoded in the function
{"sentiment": "positive", "confidence_score": 1.0}

>>> abuse("you f**king a$$hole")
{"sentence_type": "Abusive", "confidence_score": 0.953125}

>>> sentiment_social("I left my camera at home")
{"probabilities": {"positive": 0.040374, "neutral": 0.491032, "negative": 0.468594}}

>>> custom_classifier( TEXT, ID )
{ "taxonomy": [ { "tag": tag1, "confidence_score": score1 }, { "tag": tag2, "confidence_score": score2 }, ... ] }

>>> usage()
{
"emotion": 100,
"sentiment": 100,
"similarity": 100,
"taxonomy": 100,
"abuse": 100,
"intent": 100,
"keywords": 100,
"ner": 100,
"multilang": 100,
"sentiment_social": 100
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ParallelDots-1.0.21.tar.gz (6.3 kB view details)

Uploaded Source

Built Distribution

ParallelDots-1.0.21-py2.py3-none-any.whl (14.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ParallelDots-1.0.21.tar.gz.

File metadata

File hashes

Hashes for ParallelDots-1.0.21.tar.gz
Algorithm Hash digest
SHA256 d35b0aa0df6cafedc16dfbe76da55ab046966e4e970a360cb249dc7fe1332931
MD5 e58dfb9a5fd1127e51b08c540987e4ca
BLAKE2b-256 feb0d1fc3b2f5ae0ec35d5e574e2b381513411557102af48eb30ba933fd13efd

See more details on using hashes here.

File details

Details for the file ParallelDots-1.0.21-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for ParallelDots-1.0.21-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 4edfb27a5f168e11b9094aeeb4dcded7c3dce68b2b35b3563208b7ec33b51f2b
MD5 260ef553134e6e819bcc53b012a266b7
BLAKE2b-256 38a2ee57cd9cbb78889f5b42d383cdc87fc4114b7abbb657612f224233483bec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page