Skip to main content

Python wrapper of FastJet Core functionality with NumPy support

Project description

PyFJCore

Python wrapper of FastJet Core functionality with additional NumPy support. In contrast with the pyjet package, PyFJCore wraps all the methods/functions in fjcore and works with regular NumPy arrays instead of structured one. In contrast with the Python extension to the main FastJet library, this package can be built in a portable manner, including on Windows.

Current version of fjcore: 3.3.4

Documentation

The FastJet documentation and manual contain helpful information for the classes and methods in PyFJCore. Not all FastJet classes are wrapped in PyFJCore, primarily just PseudoJet, JetDefinition, ClusterSequence, and Selector.

A few modifcations have been made to fjcore to make it more amenable to wrapping in Python. SWIG automatically converts return values of std::vector<PseudoJet> to Python tuples, making a copy in the process. Another copy is be required to pass a Python iterable to methods that accept const std::vector<PseudoJet> &. The PseudoJetContainer class has been defined in order to avoid this coercion and unnecessary copying.

PseudoJetContainer

A PseudoJetContainer is a struct holding a std::vector<fastjet::PseudoJet>. This avoids SWIG's automatic coercion to native Python containers that would require copying. This coercion is still possible if desired by explicit tuple/lsit construction, e.g. tuple(pjcontainer) or list(pjcontainer). A PseudoJetContainer can be indexed, assigned to, or modified (by deleting elements) as if it were a vector of PseudoJets. The wrapper code has been modified so that methods that accept const std::vector<PseudoJet> & will accept a PseudoJetContainer without any copying. The vector property can be used to access the underlying vectorPseudoJet (SWIG's wrapper of std::vector<fastjet::PseudoJet>) directly.

Python User Info

A Python object can be attached to a PseudoJet using the .set_python_info() method. It can be accessed as .python_info().

NumPy conversion functions

pyfjcore.ptyphim_array_to_pseudojets(ptyphims)

Converts a 2D array of particles, each as (pt, y, phi, [mass]), to PseudoJets (the mass is optional). Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array. Returns a PseudoJetContainer.

pyfjcore.epxpypz_array_to_pseudojets(epxpypzs)

Converts a 2D array of particles, each as (E, px, py, pz), to PseudoJets. Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array. Returns a PseudoJetContainer.

pyfjcore.array_to_pseudojets(particles, pjrep=pyfjcore.ptyphim)

Converts a 2D array of particles to PseudoJets. The format of the particles kinematics is determined by the pjrep argument. The PseudoJetRepresentation enum can take the values ptyphim, ptyphi, epxpypz. The first two values cause this function to invoke ptyphim_array_to_pseudojets and the third invokes epxpypz_array_to_pseudojets. Any additional features (columns) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array. Returns a PseudoJetContainer.

pyfjcore.pseudojets_to_ptyphim_array(pseudojets, mass=True)

Converts a vector of PseudoJets (equivalently, PseudoJetContainer), to a 2D NumPy array of (pt, y, phi, [mass]) values, where the presence of the mass is determine by the keyword argument.

pyfjcore.pseudojets_to_epxpypz_array(pseudojets)

Converts a vector of PseudoJets (equivalently, PseudoJetContainer), to a 2D NumPy array of (E, px, py, pz) values.

pyfjcore.pseudojets_to_array(pseudojets, pjrep=pyfjcore.ptyphim)

Converts a vector of PseudoJets (equivalently, PseudoJetContainer), to a 2D NumPy array of particles in the representation determined by the pjrep keyword argument.

pyfjcore.user_indices(pseudojets)

Extracts the user indices from a vector of PseudoJets (equivalently, PseudoJetContainer) and returns them as a NumPy array of integers. There is also a user_indices method of PseudoJetContainer that has the same effect.

Version History

0.1.x

0.1.2

  • Renamed some PseudoJetRepresentation constants.
  • Updated documentation.

0.1.1

  • Fixed several bugs, including an inability to pass a PseudoJetContainer to the ClusterSequence constructor due to SWIG's typechecking.

0.1.0

  • First version released on PyPI.

References

PyFJCore relies critically on the fjcore header and source files, which in turn are created from the main FastJet library. So if you use this package in your research, please cite the FastJet package and publications.

Summary of changes to fjcore

  • fjcore.hh

    • Changed namespace from fjcore to fastjet to facilitate interoperability with the FastJet Python extension.
    • Added definition of PseudoJetContainer.
    • Wrapped some code in IsBaseAndDerived that SWIG cannot parse with #ifndef SWIG_PREPROCESSOR and #endif. Since SWIG doesn't need this code for anything, it parses the file correctly without affecting the actual compilation.
    • Replaced return value of all methods/functions that typically return std::vector<PseudoJet> with PseudoJetContainer.
    • Changed templated ClusterSequence constructor to an untemplated version using PseudoJet as the former template type.
  • fjcore.cc

    • Replaced return value of all methods/functions that typically return std::vector<PseudoJet> with PseudoJetContainer.

fjcore README

// fjcore -- extracted from FastJet v3.3.4 (http://fastjet.fr)
//
// fjcore constitutes a digest of the main FastJet functionality.
// The files fjcore.hh and fjcore.cc are meant to provide easy access to these 
// core functions, in the form of single files and without the need of a full 
// FastJet installation:
//
//     g++ main.cc fjcore.cc
// 
// with main.cc including fjcore.hh.
//
// A fortran interface, fjcorefortran.cc, is also provided. See the example 
// and the Makefile for instructions.
//
// The results are expected to be identical to those obtained by linking to
// the full FastJet distribution.
//
// NOTE THAT, IN ORDER TO MAKE IT POSSIBLE FOR FJCORE AND THE FULL FASTJET
// TO COEXIST, THE FORMER USES THE "fjcore" NAMESPACE INSTEAD OF "fastjet". 
//
// In particular, fjcore provides:
//
//   - access to all native pp and ee algorithms, kt, anti-kt, C/A.
//     For C/A, the NlnN method is available, while anti-kt and kt
//     are limited to the N^2 one (still the fastest for N < 100k particles)
//   - access to selectors, for implementing cuts and selections
//   - access to all functionalities related to pseudojets (e.g. a jet's
//     structure or user-defined information)
//
// Instead, it does NOT provide:
//
//   - jet areas functionality
//   - background estimation
//   - access to other algorithms via plugins
//   - interface to CGAL
//   - fastjet tools, e.g. filters, taggers
//
// If these functionalities are needed, the full FastJet installation must be
// used. The code will be fully compatible, with the sole replacement of the
// header files and of the fjcore namespace with the fastjet one.
//
// fjcore.hh and fjcore.cc are not meant to be human-readable.
// For documentation, see the full FastJet manual and doxygen at http://fastjet.fr
//
// Like FastJet, fjcore is released under the terms of the GNU General Public
// License version 2 (GPLv2). If you use this code as part of work towards a
// scientific publication, whether directly or contained within another program
// (e.g. Delphes, MadGraph, SpartyJet, Rivet, LHC collaboration software frameworks, 
// etc.), you should include a citation to
// 
//   EPJC72(2012)1896 [arXiv:1111.6097] (FastJet User Manual)
//   and, optionally, Phys.Lett.B641 (2006) 57 [arXiv:hep-ph/0512210]
//
//FJSTARTHEADER
// $Id$
//
// Copyright (c) 2005-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet (fjcore).
//
//  FastJet is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  The algorithms that underlie FastJet have required considerable
//  development. They are described in the original FastJet paper,
//  hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
//  FastJet as part of work towards a scientific publication, please
//  quote the version you use and include a citation to the manual and
//  optionally also to hep-ph/0512210.
//
//  FastJet is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//FJENDHEADER

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyFJCore-0.2.0.tar.gz (187.7 kB view details)

Uploaded Source

Built Distributions

PyFJCore-0.2.0-cp39-cp39-win_amd64.whl (332.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyFJCore-0.2.0-cp39-cp39-win32.whl (255.8 kB view details)

Uploaded CPython 3.9 Windows x86

PyFJCore-0.2.0-cp39-cp39-manylinux2010_x86_64.whl (406.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.0-cp39-cp39-manylinux2010_i686.whl (402.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

PyFJCore-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (348.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyFJCore-0.2.0-cp38-cp38-win_amd64.whl (331.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyFJCore-0.2.0-cp38-cp38-win32.whl (256.4 kB view details)

Uploaded CPython 3.8 Windows x86

PyFJCore-0.2.0-cp38-cp38-manylinux2010_x86_64.whl (407.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.0-cp38-cp38-manylinux2010_i686.whl (401.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

PyFJCore-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl (347.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyFJCore-0.2.0-cp37-cp37m-win_amd64.whl (331.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyFJCore-0.2.0-cp37-cp37m-win32.whl (256.1 kB view details)

Uploaded CPython 3.7m Windows x86

PyFJCore-0.2.0-cp37-cp37m-manylinux2010_x86_64.whl (405.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.0-cp37-cp37m-manylinux2010_i686.whl (401.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

PyFJCore-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (347.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyFJCore-0.2.0-cp36-cp36m-win_amd64.whl (331.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyFJCore-0.2.0-cp36-cp36m-win32.whl (256.0 kB view details)

Uploaded CPython 3.6m Windows x86

PyFJCore-0.2.0-cp36-cp36m-manylinux2010_x86_64.whl (405.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.0-cp36-cp36m-manylinux2010_i686.whl (401.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

PyFJCore-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl (347.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

PyFJCore-0.2.0-cp35-cp35m-win_amd64.whl (331.4 kB view details)

Uploaded CPython 3.5m Windows x86-64

PyFJCore-0.2.0-cp35-cp35m-win32.whl (256.0 kB view details)

Uploaded CPython 3.5m Windows x86

PyFJCore-0.2.0-cp35-cp35m-manylinux2010_x86_64.whl (405.5 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.0-cp35-cp35m-manylinux2010_i686.whl (401.2 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

PyFJCore-0.2.0-cp35-cp35m-macosx_10_9_x86_64.whl (342.2 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

PyFJCore-0.2.0-cp27-cp27mu-manylinux2010_x86_64.whl (406.9 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.0-cp27-cp27mu-manylinux2010_i686.whl (403.7 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

PyFJCore-0.2.0-cp27-cp27m-manylinux2010_x86_64.whl (406.9 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.0-cp27-cp27m-manylinux2010_i686.whl (403.7 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

PyFJCore-0.2.0-cp27-cp27m-macosx_10_9_x86_64.whl (345.0 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file PyFJCore-0.2.0.tar.gz.

File metadata

  • Download URL: PyFJCore-0.2.0.tar.gz
  • Upload date:
  • Size: 187.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0.tar.gz
Algorithm Hash digest
SHA256 9a444b466bd1aee27f5752a84acb83f6f36d4dbf152ce592eca60cd326675ed3
MD5 58ce57e94dc4a1fd510efe01826ac8e1
BLAKE2b-256 fa35bef7b5747760791e8b1d195f116b715ea912ab0bf076508b4222ed5d31f0

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 332.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7d33cd189c87168c0d8ad1af35ec262b1d0a937b835b5b3a3ca41da520aecbfd
MD5 7063a0d140771d2e544156e86df77fe9
BLAKE2b-256 d49d3e643fe00de41c428998f7bc1d35b112b899ecb760b453e4b57d47229efd

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 255.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ecd934adcca7a2278951f5ecb8439be9054b01e65d688909e6adfd5674f7392b
MD5 c3932f0ce56aa697f4af8e9ffeacc67c
BLAKE2b-256 e9d5448f33c1f26b475ef68b86a175d76b751ddf2a11cd108ac3f405404c0b8e

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 406.4 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 585f2a37565cbe2e15f490462515b3cdd9ebaae9b9349be239f46bb48a9a69f5
MD5 670d5126f8f343cc72ca548bd7e78c9b
BLAKE2b-256 db7837edc2851aa131dbfcc62f19e8cf1529337c76c2927a05c106a1bf752729

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 402.1 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 cd66796c4ee8df07ea5978f7a16f5c87844760f44f738e2b51ffaf415713a7cb
MD5 be3ed199401317c401254c244d1b0646
BLAKE2b-256 0eea1a52a104f9a4a94c3b34a6d846f8fd7762dd7cc8d63540b7d961634ee565

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 348.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1906d479eec01e1fbacef6afc3ef114d4490fdc62e36151151a78319b5fce3c
MD5 03f94040ff408c731dcc0a87db41eb10
BLAKE2b-256 2b3156e6cf47dc02e173e0a1f307243dcb48e9c0e33327abfb95c7bc1fc08dab

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 331.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6efd95e75b9d04c1513d7ad3f10dae5e322500861b21f4e83413177a37ec47c8
MD5 a7b8a04c9593b033417a8958587b05ec
BLAKE2b-256 e2ace69562f0747b084fd70cc7a76b8ea95f428e0d622dd161789ae3271cc119

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 256.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f2ea4319c63e9115313790eab8fd7d2dae132e90a0a9a3148983fb04457ca2a9
MD5 7358dad0f7fe60ab5aacc3e78f63c0ec
BLAKE2b-256 502cb7871ada743ccad852e25228fa37f797e825c6ca6f8aed6ac75d657317c1

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 407.0 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6bb298b00d62b6a6548e810b7900f1b3786331fef435c3f8023c1da41817e6b3
MD5 f1c1d943660164009ae84657d6f3e81a
BLAKE2b-256 d887925ffa9e3e2a9e82cb01a22347e03bac3b35447780169b5ba901c7ed3f43

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 401.8 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2e7bd939ac75fe028cea6b54377e91f1c5eaff3b5b40f554c6d4787e5bbfbe0a
MD5 051ac6d813ed599f7a1a16bd0438e352
BLAKE2b-256 858b9531e0490752964dd78e957fba6cdfad6a43bb57488223540c070f09d0bb

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 347.8 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac6c883a2db466ccfdfc591f12ba50d3d780c666485d4b719e060bc4b7371e8f
MD5 b49c4607d013de5d220e081449c4de19
BLAKE2b-256 e3477cf5cec5d9b048cb8811424c66599d6188a79a5e397f112284e76f1fb58b

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 331.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 92f0bbfe8396d358c1043ae2b5ff5f412ec8ab31203fd954bbf14b029af25191
MD5 895927532ff4eeb137be7341c374c871
BLAKE2b-256 7f6300ac2c0a01d44b8bcc0a0635e9a52bc4f8a3ffdb15ea286747df674ff902

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 256.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ed87625b0eacccd9b757ff205168dd00083119cfc6d44693a4e717fe8d4efc6b
MD5 b550d9e08fbb66a585d3dedf6f1301f6
BLAKE2b-256 c2c110df30e7d4a36a9305714d50f1191ecc62eee600f5a009494f31a3cf23d1

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 405.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 34495dd44a080a5ad40d47256901bfd168c0e653c0c4d287699629c13e48896c
MD5 7fd880d0b099a1bc2189335055fc0b03
BLAKE2b-256 34c19d418e0218fbac48bb994acf3f856cabd7bd1c937c74d1e9976ae1349ce7

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 401.2 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 106dfa3d4e5fe1a5ea64188c7c2f22b675ffb3b8c22d57187bf64bfedac52491
MD5 59df70a18cfe860d64ef22bb904665b1
BLAKE2b-256 129e11a252099706c7aadff962c1b796d9834e8ac73430e2a6ca851370994d7b

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 347.5 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70f3436e2720298735f0e137e613b9e9bca9c8bce73db28459786385c30472e0
MD5 2dbf80a01a369cd634d11ddd9d378759
BLAKE2b-256 b67fb0c1308ebb4d0b85330dc70cf4dc7c05b024f0c3fcd300d83624e0df47b8

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 331.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7eff083e940724a8fd51889c0be441148e88561c654e082697645aefaa7c14b3
MD5 da87e595a1395e2214ceddb69a617d7d
BLAKE2b-256 06bb324ea4b203d5aa14bf391a9fb7fd46a4ba3781d450a170bf48a375f8265a

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 256.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6aefcde7e54e20f513e479c2d0cd697f7725d2578a7fb6ee7c4aed542d41476f
MD5 9a0c57fc793c0424e26a5b72eae1dc15
BLAKE2b-256 bd9b2a29d540d2921983422d4b91a71ed010f111bb2d35eb372c185333a97ee8

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 405.5 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 61e845eef88a4a86862bcc397ab8250f46e5dd9bb7eb6a8920d85ceed669e947
MD5 8831e33aa058c76d4db0ebad0b828d59
BLAKE2b-256 27d62813223ec777170dd5dde3261b2927c031f0dea9cc0e03658f3b42c04f2d

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 401.2 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6ee86bce2f3227a960cec26ad2425231cecf9bd1b0dacf45f9d7efea52f44bd3
MD5 7ea5346d89c382ef0815fc180feeb668
BLAKE2b-256 92122077454e7c5243919b51035042528b4c11367b56ffa2a4bf40fc4adf325f

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 347.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 06ce558098366af29b14c5b9586b41e933bd07acda5d09a7a3d81c29d61be2a9
MD5 46698e9a1b725d3612c5b4bd455e6aa7
BLAKE2b-256 0355a0e1ba67c5ec78709c74f1c01e326d6466c5a18822a44903a9f85e1df9d6

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 331.4 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 28d0cbe46abfbdbc33ed5fbb007b350fc7c7afb311a83bd9fa150817e71ac97a
MD5 1954d5cf50898a27ae2651f0878f2df0
BLAKE2b-256 763eaa13fd403b9fb0290f2c069c4ed94e6fe9de8b6210c75d350e564c1f4f08

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 256.0 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 be61b98e1a9da01e2ae56254724d3b3514b08a82047d3c7456afc41d2b37536e
MD5 fa9929c4c82bcced836f21ad0f82e1f6
BLAKE2b-256 0a630d5e2227ebeacfecea6e2c0fe5b9c14480e2a8d069b47b5a37d938c7f859

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 405.5 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4600073cc3a700934860bd5824c86a2cf3f368f87536c2b4bc5305a5eb257e68
MD5 07b797c7088450ab4ca84d62d132963f
BLAKE2b-256 ca62d8fb5b92e3d5599f285f8310dd188d1aa3bd234595d4ad253bd8a8344db5

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 401.2 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4d68ad154a7d626ff496030c8261d5ed5f7e91323386be933413ca83fa18de8a
MD5 6f1cc133fbfddd2e46cb7c10a3979e96
BLAKE2b-256 27bb8caf05ca5a07e243f67c098c3e63f72364b88d8b13b33a6cf818ffd748e7

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 342.2 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ef776c13ee43de2f9f3d84eb70310c17aef29e9e5519598c87cbaa434da0577
MD5 9f3ebf13f8861888023bbd739179ea34
BLAKE2b-256 dfc0c811beb719c7dca1da8f801fac289e4b8d51296db506cfe9322587bc4ef9

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 406.9 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 348010266c0e23458d7e752e9e9d6e52d6e37d863c3fc957814c1bb0382e894a
MD5 3d5a2b02c1a0072d1befc9a9f3ffa62c
BLAKE2b-256 89a38460e19e0a39ed7adab230c287811865cff68744fe78cf587ceb4a119906

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 403.7 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8b2515dc9ae989cd9e0769f346110e4c18f6f81f23cb0ccc101d4ecb06d2de28
MD5 403c39a69e27e1afe6df1b4771ff523e
BLAKE2b-256 488e859a5663c1c62ccecd2944031360459b9ea9433b648647174c676bdd9db6

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 406.9 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8436e12e8dc032193e88a6b5c41ef4e4a69fe4b47051ae4f51f75d27adc1bc58
MD5 f12880f8effcdfe677052aa3df03db10
BLAKE2b-256 588d7f2e1f2ed485540faf2e73b7d0aca2fef14029c1fb138a9a1852b07051fb

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 403.7 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.0-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bc8c0e92de2a02e989c3b225f29417a08af8dbcc55d46684385993741b5d6aac
MD5 eac28b74dbb6687c6bb1fb2ed0efe671
BLAKE2b-256 f0e31de52bcff353df87ad4cc3fa1d7f53c6de87e27fd57dc3b772f616014a2f

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.0-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 345.0 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69d0b711d8d45904e41c595fa9751076d11013c9b6adebe20fbd382f8499b14a
MD5 54918d16ca74e09127b82b6a88bcbe3d
BLAKE2b-256 f8b886da6232ffe027460dd8524a5016e42441c187e2de633b217f84fa77194d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page