Skip to main content

Python wrapper of FastJet Core functionality with NumPy support

Project description

PyFJCore

Python wrapper of FastJet Core functionality with additional NumPy support. In contrast with the pyjet package, PyFJCore wraps all the methods/functions in fjcore and works with regular NumPy arrays instead of structured one. In contrast with the Python extension to the main FastJet library, this package can be built in a portable manner, including on Windows.

Current version of fjcore: 3.3.4

Documentation

The FastJet documentation and manual contain helpful information for the classes and methods in PyFJCore. Not all FastJet classes are wrapped in PyFJCore, primarily just PseudoJet, JetDefinition, ClusterSequence, and Selector.

A few modifcations have been made to fjcore to make it more amenable to wrapping in Python. SWIG automatically converts return values of std::vector<PseudoJet> to Python tuples, making a copy in the process. Another copy is be required to pass a Python iterable to methods that accept const std::vector<PseudoJet> &. The PseudoJetContainer class has been defined in order to avoid this coercion and unnecessary copying.

PseudoJetContainer

A PseudoJetContainer is a struct holding a std::vector<fastjet::PseudoJet>. This avoids SWIG's automatic coercion to native Python containers that would require copying. This coercion is still possible if desired by explicit tuple/lsit construction, e.g. tuple(pjcontainer) or list(pjcontainer). A PseudoJetContainer can be indexed, assigned to, or modified (by deleting elements) as if it were a vector of PseudoJets. The wrapper code has been modified so that methods that accept const std::vector<PseudoJet> & will accept a PseudoJetContainer without any copying. The vector property can be used to access the underlying vectorPseudoJet (SWIG's wrapper of std::vector<fastjet::PseudoJet>) directly.

Python User Info

A Python object can be attached to a PseudoJet using the .set_python_info() method. It can be accessed as .python_info().

NumPy conversion functions

pyfjcore.ptyphim_array_to_pseudojets(ptyphims)

Converts a 2D array of particles, each as (pt, y, phi, [mass]), to PseudoJets (the mass is optional). Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array. Returns a PseudoJetContainer.

pyfjcore.epxpypz_array_to_pseudojets(epxpypzs)

Converts a 2D array of particles, each as (E, px, py, pz), to PseudoJets. Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array. Returns a PseudoJetContainer.

pyfjcore.array_to_pseudojets(particles, pjrep=pyfjcore.ptyphim)

Converts a 2D array of particles to PseudoJets. The format of the particles kinematics is determined by the pjrep argument. The PseudoJetRepresentation enum can take the values ptyphim, ptyphi, epxpypz. The first two values cause this function to invoke ptyphim_array_to_pseudojets and the third invokes epxpypz_array_to_pseudojets. Any additional features (columns) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array. Returns a PseudoJetContainer.

pyfjcore.pseudojets_to_ptyphim_array(pseudojets, mass=True)

Converts a vector of PseudoJets (equivalently, PseudoJetContainer), to a 2D NumPy array of (pt, y, phi, [mass]) values, where the presence of the mass is determine by the keyword argument.

pyfjcore.pseudojets_to_epxpypz_array(pseudojets)

Converts a vector of PseudoJets (equivalently, PseudoJetContainer), to a 2D NumPy array of (E, px, py, pz) values.

pyfjcore.pseudojets_to_array(pseudojets, pjrep=pyfjcore.ptyphim)

Converts a vector of PseudoJets (equivalently, PseudoJetContainer), to a 2D NumPy array of particles in the representation determined by the pjrep keyword argument.

pyfjcore.user_indices(pseudojets)

Extracts the user indices from a vector of PseudoJets (equivalently, PseudoJetContainer) and returns them as a NumPy array of integers. There is also a user_indices method of PseudoJetContainer that has the same effect.

Version History

0.1.x

0.1.2

  • Renamed some PseudoJetRepresentation constants.
  • Updated documentation.

0.1.1

  • Fixed several bugs, including an inability to pass a PseudoJetContainer to the ClusterSequence constructor due to SWIG's typechecking.

0.1.0

  • First version released on PyPI.

References

PyFJCore relies critically on the fjcore header and source files, which in turn are created from the main FastJet library. So if you use this package in your research, please cite the FastJet package and publications.

Summary of changes to fjcore

  • fjcore.hh

    • Changed namespace from fjcore to fastjet to facilitate interoperability with the FastJet Python extension.
    • Added definition of PseudoJetContainer.
    • Wrapped some code in IsBaseAndDerived that SWIG cannot parse with #ifndef SWIG_PREPROCESSOR and #endif. Since SWIG doesn't need this code for anything, it parses the file correctly without affecting the actual compilation.
    • Replaced return value of all methods/functions that typically return std::vector<PseudoJet> with PseudoJetContainer.
    • Changed templated ClusterSequence constructor to an untemplated version using PseudoJet as the former template type.
  • fjcore.cc

    • Replaced return value of all methods/functions that typically return std::vector<PseudoJet> with PseudoJetContainer.

fjcore README

// fjcore -- extracted from FastJet v3.3.4 (http://fastjet.fr)
//
// fjcore constitutes a digest of the main FastJet functionality.
// The files fjcore.hh and fjcore.cc are meant to provide easy access to these 
// core functions, in the form of single files and without the need of a full 
// FastJet installation:
//
//     g++ main.cc fjcore.cc
// 
// with main.cc including fjcore.hh.
//
// A fortran interface, fjcorefortran.cc, is also provided. See the example 
// and the Makefile for instructions.
//
// The results are expected to be identical to those obtained by linking to
// the full FastJet distribution.
//
// NOTE THAT, IN ORDER TO MAKE IT POSSIBLE FOR FJCORE AND THE FULL FASTJET
// TO COEXIST, THE FORMER USES THE "fjcore" NAMESPACE INSTEAD OF "fastjet". 
//
// In particular, fjcore provides:
//
//   - access to all native pp and ee algorithms, kt, anti-kt, C/A.
//     For C/A, the NlnN method is available, while anti-kt and kt
//     are limited to the N^2 one (still the fastest for N < 100k particles)
//   - access to selectors, for implementing cuts and selections
//   - access to all functionalities related to pseudojets (e.g. a jet's
//     structure or user-defined information)
//
// Instead, it does NOT provide:
//
//   - jet areas functionality
//   - background estimation
//   - access to other algorithms via plugins
//   - interface to CGAL
//   - fastjet tools, e.g. filters, taggers
//
// If these functionalities are needed, the full FastJet installation must be
// used. The code will be fully compatible, with the sole replacement of the
// header files and of the fjcore namespace with the fastjet one.
//
// fjcore.hh and fjcore.cc are not meant to be human-readable.
// For documentation, see the full FastJet manual and doxygen at http://fastjet.fr
//
// Like FastJet, fjcore is released under the terms of the GNU General Public
// License version 2 (GPLv2). If you use this code as part of work towards a
// scientific publication, whether directly or contained within another program
// (e.g. Delphes, MadGraph, SpartyJet, Rivet, LHC collaboration software frameworks, 
// etc.), you should include a citation to
// 
//   EPJC72(2012)1896 [arXiv:1111.6097] (FastJet User Manual)
//   and, optionally, Phys.Lett.B641 (2006) 57 [arXiv:hep-ph/0512210]
//
//FJSTARTHEADER
// $Id$
//
// Copyright (c) 2005-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet (fjcore).
//
//  FastJet is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  The algorithms that underlie FastJet have required considerable
//  development. They are described in the original FastJet paper,
//  hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
//  FastJet as part of work towards a scientific publication, please
//  quote the version you use and include a citation to the manual and
//  optionally also to hep-ph/0512210.
//
//  FastJet is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//FJENDHEADER

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyFJCore-0.2.1.tar.gz (188.4 kB view details)

Uploaded Source

Built Distributions

PyFJCore-0.2.1-cp39-cp39-win_amd64.whl (332.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyFJCore-0.2.1-cp39-cp39-win32.whl (255.7 kB view details)

Uploaded CPython 3.9 Windows x86

PyFJCore-0.2.1-cp39-cp39-manylinux2010_x86_64.whl (406.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.1-cp39-cp39-manylinux2010_i686.whl (402.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

PyFJCore-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl (348.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyFJCore-0.2.1-cp38-cp38-win_amd64.whl (331.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyFJCore-0.2.1-cp38-cp38-win32.whl (256.4 kB view details)

Uploaded CPython 3.8 Windows x86

PyFJCore-0.2.1-cp38-cp38-manylinux2010_x86_64.whl (406.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.1-cp38-cp38-manylinux2010_i686.whl (401.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

PyFJCore-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl (348.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyFJCore-0.2.1-cp37-cp37m-win_amd64.whl (332.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyFJCore-0.2.1-cp37-cp37m-win32.whl (256.1 kB view details)

Uploaded CPython 3.7m Windows x86

PyFJCore-0.2.1-cp37-cp37m-manylinux2010_x86_64.whl (405.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.1-cp37-cp37m-manylinux2010_i686.whl (401.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

PyFJCore-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (348.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyFJCore-0.2.1-cp36-cp36m-win_amd64.whl (331.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyFJCore-0.2.1-cp36-cp36m-win32.whl (256.0 kB view details)

Uploaded CPython 3.6m Windows x86

PyFJCore-0.2.1-cp36-cp36m-manylinux2010_x86_64.whl (405.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.1-cp36-cp36m-manylinux2010_i686.whl (401.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

PyFJCore-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl (348.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

PyFJCore-0.2.1-cp35-cp35m-win_amd64.whl (331.9 kB view details)

Uploaded CPython 3.5m Windows x86-64

PyFJCore-0.2.1-cp35-cp35m-win32.whl (256.0 kB view details)

Uploaded CPython 3.5m Windows x86

PyFJCore-0.2.1-cp35-cp35m-manylinux2010_x86_64.whl (405.6 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.1-cp35-cp35m-manylinux2010_i686.whl (401.4 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

PyFJCore-0.2.1-cp35-cp35m-macosx_10_9_x86_64.whl (342.3 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

PyFJCore-0.2.1-cp27-cp27mu-manylinux2010_x86_64.whl (407.2 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.1-cp27-cp27mu-manylinux2010_i686.whl (403.8 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

PyFJCore-0.2.1-cp27-cp27m-manylinux2010_x86_64.whl (407.2 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

PyFJCore-0.2.1-cp27-cp27m-manylinux2010_i686.whl (403.8 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

PyFJCore-0.2.1-cp27-cp27m-macosx_10_9_x86_64.whl (345.2 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file PyFJCore-0.2.1.tar.gz.

File metadata

  • Download URL: PyFJCore-0.2.1.tar.gz
  • Upload date:
  • Size: 188.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1.tar.gz
Algorithm Hash digest
SHA256 9890c6a87711a7d29ec2979c2e13379385476bba1453f9b72df5ef8491b7a75d
MD5 6de10b325e3e733025421f19e2322006
BLAKE2b-256 aa1c3771bd38fc5a2aea793f00fb208ea082d9346bb9bcb67c4f8bbdb57b2702

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 332.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5101ca7a6fd268f50018d176496a7613f83a50ea162444b06277e540f4297266
MD5 4ac5d8c346b1e532770d8e626ff47985
BLAKE2b-256 7399ed9d655729869d06f8eb98ecdf07986f1313f61ae577978d0ba7faaee7af

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 255.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ebb259909faec3e24ee1c712a36a58d3298cd0f4c4a1a5a2d1d25581fa6e9c27
MD5 1510b7ddd4c6b36ae701fe555a92d328
BLAKE2b-256 45a2c026258f1a6f2475a562a3ffb73cc986f5ea4fbe24e61ca65c7198be9825

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 406.7 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bad48c5e7fe9de0ca6b9dd8d956de232c5954da0655928a24b37bb5c79d1c0f9
MD5 77edc22d3e0a9322a7d17bea6e53fbe1
BLAKE2b-256 3b963fa88c73870399ce91c5de51d46d099bd60b8eb1a817f0aa01174d63a5ef

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 402.1 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4ae962d292f8dbdc6fce89935cecbbf80d199567017ff3aabdcdd2797fc5e648
MD5 43ca69c5da5b36760b1c4e7f7ddf71d0
BLAKE2b-256 c11f2bcac44ad874770ea9e9a572c0b26170798aa46a86a378c10c010aeff628

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 348.6 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a2554c190680fb357e765743d1065a96a9ea0f4801328bc6517b088dae6f2a4
MD5 54c727c4ddaabc0694642a34c289e46d
BLAKE2b-256 d9c6f65607d514ae13dc64c3d5276e424b94aaf8f7e4c7d20ef51f966a4400fe

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 331.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bf0433377560d20d01892d586464fe076a0ae354fce20d0eee5bf594320f6915
MD5 2d73c5a052a266c780acd420a4f3d210
BLAKE2b-256 9a7a40acb8df06a56daac8613ac9b6f376dc9059b085d3c539b4325650b3cceb

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 256.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8662d0dec91fd8dd8c0c3db3ca95d6ac5a482a2ffc3c2a66df4fdc57ee0b3771
MD5 762a63df177ed2e9d5b50ddfa85b0565
BLAKE2b-256 06efed7acdb1af3540de3958e2c52cfbdb19c10e72a38bede5f5c5f0723eab6e

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 406.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 549bba5e4993bb25dace80446cdeac16a7519d33fe8472b62d22eb7357654cab
MD5 16c674b607eb6d5d1f655ae173c41cd2
BLAKE2b-256 53d0e12a43339ed4bf41e54da05728eca2749a573f92421d74496628ce33a598

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 401.8 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bd32a7be6612399026d95adc1bd6ce2817f785c86889bea295a655056294e787
MD5 cfdee24028d9bd045c3f7d47915c9d16
BLAKE2b-256 798c1a9311720a512f5430bf1028092100575d1b5db1333fba36f871a25ab5c4

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 348.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6937091a7c82a56baff54d55316ed391251e3195c0e16ea91eab13d48154ec37
MD5 a2b118888c91ae12e2da895cb9fde993
BLAKE2b-256 b9e37fbceb6388a74ca5882c9afd4bcbafac89aeb3664eb9646bc357fee1ceb1

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 332.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ccd579019684d3305631bbfa94ed2b4e01fde9b0d2c4f6ee581d9632512c45f0
MD5 0dfc883d7fff951b67be646acddca0b1
BLAKE2b-256 29ad9a3ff733b8f21bc1d8fc0f8cb97b643038d8dedccfdfe1bfa57227ee9128

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 256.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 24a882268db58f40abc52d6557dd8e0a4e48fe06955d2d1ad6845660c596141f
MD5 6e87b39c70a43b9dd311e8a3edc4b9be
BLAKE2b-256 551279873c17f54ad81effb73d18ccdbe5b51c7be6ea55f0f8c0ba106963933e

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 405.6 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ff64e53bd90490812a437e8b5051f2024b67990ecc615c37d5bf71557827b9ed
MD5 4fca3eafcaeaa65ff7d2265631fcc083
BLAKE2b-256 1571e73e696f9b4b7752b8e42c957ca4eb351482516339044fd9f4ebf57d01ff

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 401.4 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ab25d44bdfa1364e8d4b25922bd4fad7769887db9977166d36cc6f57dd2f0dc6
MD5 41d3ceb34350b8a5b48c9723a2583c9a
BLAKE2b-256 7f044f6f8a61b9c8b40ecf2a6dd035cd92d7d275d5a3b3280ae5235e0bfa99dc

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 348.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5057f8a9abb35abc752484b459137ddd0cd9400303445ff02a94a4269fb120c
MD5 44db3cb871246eb258d011a19773b122
BLAKE2b-256 86172bc419188b8c82577f4aeaeb24744c38635bcc8e41745b43ba22a7f30999

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 331.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6a5c349969481650228b4257c58923ae45c62afd521045d8b2cf4bc5980d70fd
MD5 a42d5f99922309d4ebb346fa2a08a7f9
BLAKE2b-256 033144143dc72bbc939ad06b60ebb62b7fa4bc108089ef8ff2254b0ed5f4b3d8

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 256.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 db769ffe89cc2f127611e55c422f20c454d9882f86d0588ac4ffe3523983ea41
MD5 c0974cd13eb5dbb17ec402196bcf842c
BLAKE2b-256 2b39a98a6c6fe184f6d74389f16895037f587a510199e2bb38bc8ef8263087ce

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 405.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 05f89ed5efc99b40c3a74d83dcb30bb0c6c978120e11b732898fd4bc6b25deb8
MD5 65a0465aff1b4146a00b553bb9ba79ef
BLAKE2b-256 9e2cc4fe6e44aef0b129ad3cea41b7ab0b017828b4e883d12708519109cf8fbe

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 401.4 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c06a348dec677a35e80fb167965c4c0c8e7cebce364a94bd0bb8fb75823eb4e8
MD5 84767ef722f6ccd427abe3e7c78fa95f
BLAKE2b-256 b484ba9cbb2bbe9b0d1fbd8ef6dd76d2801a059dda2115685baebb1c340cd709

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 348.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e1154fb7a7fb8a2b165df207ff23f8723e46de764e00fe524ce761ccd36b732
MD5 90794ab10aff12e3c490ecb7fa82eac1
BLAKE2b-256 a6c70fac570cc9a2b8efab188ce6b7eea50eb0bfc969fb3e3014d26d699fd358

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 331.9 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 64abfb6ab45e66fc64e294f113975daebf0f01a40a2c9f14a4355d4564197790
MD5 699f1c23a2eec6ff863e042bc458feb3
BLAKE2b-256 3bd432293b8617694f123d00ec3acc8d637c2b200e81386a421ff41a26ab8323

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 256.0 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 6340343fbf7e31c27c56c36c6ef71a66e80613532c5e6b03148ed5986c2141bd
MD5 2f63f93a0dad7e868af1c5f8a7cec658
BLAKE2b-256 362af9cbdc6964f7e720d92b15e4ed9b8664e07d6b80555485d0c4478cf27a87

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 405.6 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c0fa0d1c31f95095f344e6f228601de55fb2406e378fe36a1d433e7f804bfc86
MD5 15546500a4fea846ef49680b47523ee9
BLAKE2b-256 fb0a1604b21677522acdaf4aa5ab6307f4d96d7dde7b5eaa1c09d1a7a915d89b

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 401.4 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 791cc5ac38ab9a9888b2329f6f476cad57f30edfce0c2dd7096278d3ab5db607
MD5 29eb9fd1c95fd2dc65ff961531c1950c
BLAKE2b-256 229dab8de2b453e95a452453e890066d084568f464374270101dd3bbe32d5639

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 342.3 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1874f7eb898bc0e286f9adbcd164a378b0eeae8188ce94c7a5f66d6ca468509f
MD5 10ab63904e84feff542e394e874e32b5
BLAKE2b-256 a729cfd73085c3a3929c2985631893d255f0892aa0337564d78de1216f20da24

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 407.2 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4cdf7b25c999bad3c729e5b4bd41f2bb6e64586db4f8e1d2f257c80a2abd29f0
MD5 e172cc067b7073c214d4dbacc03df556
BLAKE2b-256 0bbade9b9747e749a0dd0bfd86a8d98e299ea1fb445255f4308d324fb4e92e32

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 403.8 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 cc41f71cf57710da8d888a324db1c1e2c725d4cf8dba788f87564b81d4428508
MD5 54befcb8ef6bc2954f76c1a10b54b164
BLAKE2b-256 dbb95328f01663172809f2973d4eb137541f860d6975225d4d57eabebd2aa5d3

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 407.2 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0ed4a0e9ac88850515bf2f0772ada99e1dd8f0403334d86f983526e9d4f18d41
MD5 30af5a21fb571853f83c83481580bda5
BLAKE2b-256 a8cee0f33ea25147c1dc3bf8d9a35f95246c1389ce545a248d2be38cef829d75

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 403.8 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for PyFJCore-0.2.1-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 dbf2d312d653ea58721c9f44a9d00492aeb1ffdb2c2c8cdf045305344dbd0947
MD5 ffb077cbbceb2ec9335660cc0ad403fb
BLAKE2b-256 35bd18243855bf1e1c5570a8a93901a00c85e3af018c4b46b09a0808cc5b068a

See more details on using hashes here.

File details

Details for the file PyFJCore-0.2.1-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-0.2.1-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 345.2 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for PyFJCore-0.2.1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6705dffa210fa1efdbe15097f0615033720bccafcfa732adb36ff49f6b8f7855
MD5 309d3f49badde9d1caee582e7f542b42
BLAKE2b-256 f1bc472054c9bcca0429d05ffdfd390ec087bab006415c11d710485d4deefafc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page