Skip to main content

Python wrapper of FastJet Core functionality with NumPy support

Project description

PyFJCore

build-wheels PyPI version python versions

PyFJCore is a Python wrapper of FastJet Core functionality with additional NumPy support. In contrast with the pyjet package, PyFJCore wraps all the methods/functions in fjcore and works with regular NumPy arrays instead of structured one. In contrast with the Python extension to the main FastJet library, this package can be built in a portable manner, including on Windows, and is available on PyPI.

Current version of fjcore: 3.4.0

Documentation

The FastJet documentation and manual contain helpful information for the classes and methods in PyFJCore. Not all FastJet classes are wrapped in PyFJCore, primarily just PseudoJet, JetDefinition, ClusterSequence, and Selector.

PseudoJet

Particles are represented in FastJet by PseudoJet objects. PseudoJets can be constructed from Cartesian momenta using the constructor, pyfjcore.PseudoJet(px, py, pz, e). They can be constructed from hadronic momenta as pyfjcore.PtYPhiM(pt, y, phi, [mass]), where the mass is optional and is taken to be zero if not present.

PseudoJets have a user index which is set to -1 by default. It can be set using the set_user_index(index) method and accessed with the user_index() method. An arbitrary Python object can also be associated with a PseudoJet using the set_python_info(pyobj) method, and accessed as python_info().

PseudoJetContainer

A PseudoJetContainer is useful for efficiently working with a list/vector of PseudoJets. In C++, it is a struct holding a std::vector<PseudoJet>, which allows the user to control SWIG's automatic coercion to/from native Python containers. Such coercion can be useful, but can also be inefficient since it requires a lot of copying. This coercion is still possible if desired by explicit tuple/list construction, e.g. tuple(pjcontainer) or list(pjcontainer). A PseudoJetContainer can be indexed, assigned to, or modified (by deleting elements) as if it were a list of PseudoJets. The wrapper code has been modified so that methods that accept const std::vector<PseudoJet> & will accept a PseudoJetContainer without any copying. The vector property can be used to access the underlying vectorPseudoJet (SWIG's wrapper of std::vector<fastjet::PseudoJet>) directly.

PseudoJetContainers con be constructed directly from an iterable of PseudoJets, or more commonly from NumPy arrays of particle kinematics (see the functions ptyphim_array_to_pseudojets, epxpypz_array_to_pseudojets, array_to_pseudojets below). Given a PseudoJetContainer, a NumPy array of the particle kinematics can be obtained using the methods ptyphim_array, epxpypz_array, and array, which correspond to the functions pseudojets_to_ptyphim_array, pseudojets_to_epxpypz_array, and pseudojets_to_array below. The user indices of the PseudoJets can be obtained as an integer NumPy array using the user_indices() method.

NumPy conversion functions

pyfjcore.ptyphim_array_to_pseudojets(ptyphims)

Converts a 2D array of particles, each as (pt, y, phi, [mass]), to PseudoJets (the mass is optional). Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.epxpypz_array_to_pseudojets(epxpypzs)

Converts a 2D array of particles, each as (E, px, py, pz), to PseudoJets. Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.array_to_pseudojets(particles, pjrep=pyfjcore.ptyphim)

Converts a 2D array of particles to PseudoJets. The format of the particles kinematics is determined by the pjrep argument. The PseudoJetRepresentation enum can take the values ptyphim, ptyphi, epxpypz. The first two values cause this function to invoke ptyphim_array_to_pseudojets and the third invokes epxpypz_array_to_pseudojets. Any additional features (columns) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.pseudojets_to_ptyphim_array(pseudojets, mass=True, phi_std=False, phi_ref=None, float32=False)

Converts a collection of PseudoJets (PseudoJetContainer or a Python iterable) to a 2D NumPy array of (pt, y, phi, [mass]) values, where the presence of the mass is determine by the keyword argument. phi_std determines if the phi values will be in the range $[-\pi,\pi)$ or $[0,2\pi)$. phi_ref, if not None, the phi values will lie within $\pi$ of phi_ref. The float32 argument controls if the resulting array will be single-precision (can be useful to avoid extraneous copying, if 32-bit floats will be ultimately used).

pyfjcore.pseudojets_to_epxpypz_array(pseudojets, float32=False)

Converts a collection of PseudoJets (PseudoJetContainer or a Python iterable) to a 2D NumPy array of (E, px, py, pz) values. The float32 argument controls if the resulting array will be single-precision (can be useful to avoid extraneous copying, if 32-bit floats will be ultimately used).

pyfjcore.pseudojets_to_array(pseudojets, pjrep=pyfjcore.ptyphim, float32=False)

Converts a collection of PseudoJets (PseudoJetContainer or a Python iterable) to a 2D NumPy array of particles in the representation determined by the pjrep keyword argument (valid options are pyfjcore.ptyphim, pyfjcore.epxpypz, pyfjcore.ptyphi). The float32 argument controls if the resulting array will be single-precision (can be useful to avoid extraneous copying, if 32-bit floats will be ultimately used).

pyfjcore.user_indices(pseudojets)

Extracts the user indices from a collection of PseudoJets (PseudoJetContainer or a Python iterable) and returns them as a NumPy array of integers.

Version History

1.0.x

1.0.0

  • Restored PseudoJetContainer by explicitly overloading methods where const std::vector<PseudoJet> & is accepted as an argument. Methods that previously returned std::vector<PseudoJet> now return PseudoJetContainer.
  • EventGeometry and Piranha packages are now built using pyfjcore to provide basic FastJet classes.
  • fjcore.cc is compiled into a shared library that is linked into the Python extension.

0.4.x

0.4.0

  • Incompatibility with FastJet Python extension fixed by adding virtual methods to PseudoJet, PseudoJetStructureBase, CompositeJetStructure, and ClusterSequenceStructure that were removed in fjcore due to lack of area support.

0.3.x

0.3.0

  • Memory leak (and subsequent crash) detected in EnergyFlow testing of PyFJCore. Removing PseudoJetContainer for now.

0.2.x

0.2.1

  • Fixed typechecking so that PseudoJetContainer is accepted in overloaded functions such as Selector::operator().

0.2.0

  • Built against older NumPy properly; added pyproject.toml file.

0.1.x

0.1.2

  • Renamed some PseudoJetRepresentation constants.
  • Updated documentation.

0.1.1

  • Fixed several bugs, including an inability to pass a PseudoJetContainer to the ClusterSequence constructor due to SWIG's typechecking.

0.1.0

  • First version released on PyPI.

References

PyFJCore relies critically on the fjcore header and source files, which in turn are created from the main FastJet library. So if you use this package in your research, please cite the FastJet package and publications.

Summary of changes to fjcore

  • fjcore.hh
    • Changed namespace from fjcore to fastjet to facilitate interoperability with the FastJet Python extension.
    • Added back virtual methods to PseudoJet, PseudoJetStructureBase, CompositeJetStructure, and ClusterSequenceStructure that were removed in fjcore due to lack of area support. This is critical for ensuring compatibility with the FastJet Python extension.
    • Wrapped some code in IsBaseAndDerived that SWIG cannot parse with #ifndef SWIG_PREPROCESSOR and #endif. Since SWIG doesn't need this code for anything, it parses the file correctly without affecting the actual compilation.
    • Changed templated ClusterSequence constructor to an untemplated version using PseudoJet as the former template type.
    • Added methods that accept PseudoJetContainer anywhere that const std::vector<PseudoJet> & is an argument.

fjcore README

// fjcore -- extracted from FastJet v3.4.0 (http://fastjet.fr)
//
// fjcore constitutes a digest of the main FastJet functionality.
// The files fjcore.hh and fjcore.cc are meant to provide easy access to these 
// core functions, in the form of single files and without the need of a full 
// FastJet installation:
//
//     g++ main.cc fjcore.cc
// 
// with main.cc including fjcore.hh.
//
// A fortran interface, fjcorefortran.cc, is also provided. See the example 
// and the Makefile for instructions.
//
// The results are expected to be identical to those obtained by linking to
// the full FastJet distribution.
//
// NOTE THAT, IN ORDER TO MAKE IT POSSIBLE FOR FJCORE AND THE FULL FASTJET
// TO COEXIST, THE FORMER USES THE "fjcore" NAMESPACE INSTEAD OF "fastjet". 
//
// In particular, fjcore provides:
//
//   - access to all native pp and ee algorithms, kt, anti-kt, C/A.
//     For C/A, the NlnN method is available, while anti-kt and kt
//     are limited to the N^2 one (still the fastest for N < 100k particles)
//   - access to selectors, for implementing cuts and selections
//   - access to all functionalities related to pseudojets (e.g. a jet's
//     structure or user-defined information)
//
// Instead, it does NOT provide:
//
//   - jet areas functionality
//   - background estimation
//   - access to other algorithms via plugins
//   - interface to CGAL
//   - fastjet tools, e.g. filters, taggers
//
// If these functionalities are needed, the full FastJet installation must be
// used. The code will be fully compatible, with the sole replacement of the
// header files and of the fjcore namespace with the fastjet one.
//
// fjcore.hh and fjcore.cc are not meant to be human-readable.
// For documentation, see the full FastJet manual and doxygen at http://fastjet.fr
//
// Like FastJet, fjcore is released under the terms of the GNU General Public
// License version 2 (GPLv2). If you use this code as part of work towards a
// scientific publication, whether directly or contained within another program
// (e.g. Delphes, MadGraph, SpartyJet, Rivet, LHC collaboration software frameworks, 
// etc.), you should include a citation to
// 
//   EPJC72(2012)1896 [arXiv:1111.6097] (FastJet User Manual)
//   and, optionally, Phys.Lett.B641 (2006) 57 [arXiv:hep-ph/0512210]
//
//FJSTARTHEADER
// $Id$
//
// Copyright (c) 2005-2021, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet (fjcore).
//
//  FastJet is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  The algorithms that underlie FastJet have required considerable
//  development. They are described in the original FastJet paper,
//  hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
//  FastJet as part of work towards a scientific publication, please
//  quote the version you use and include a citation to the manual and
//  optionally also to hep-ph/0512210.
//
//  FastJet is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//FJENDHEADER

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyFJCore-1.0.0.tar.gz (223.0 kB view details)

Uploaded Source

Built Distributions

PyFJCore-1.0.0-cp39-cp39-win_amd64.whl (422.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyFJCore-1.0.0-cp39-cp39-win32.whl (348.6 kB view details)

Uploaded CPython 3.9 Windows x86

PyFJCore-1.0.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (554.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

PyFJCore-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (563.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

PyFJCore-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl (501.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyFJCore-1.0.0-cp38-cp38-win_amd64.whl (422.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyFJCore-1.0.0-cp38-cp38-win32.whl (348.5 kB view details)

Uploaded CPython 3.8 Windows x86

PyFJCore-1.0.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (555.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

PyFJCore-1.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (563.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

PyFJCore-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl (501.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyFJCore-1.0.0-cp37-cp37m-win_amd64.whl (421.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyFJCore-1.0.0-cp37-cp37m-win32.whl (348.1 kB view details)

Uploaded CPython 3.7m Windows x86

PyFJCore-1.0.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (554.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

PyFJCore-1.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (562.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

PyFJCore-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (501.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyFJCore-1.0.0-cp36-cp36m-win_amd64.whl (421.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyFJCore-1.0.0-cp36-cp36m-win32.whl (348.0 kB view details)

Uploaded CPython 3.6m Windows x86

PyFJCore-1.0.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (554.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

PyFJCore-1.0.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (562.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

PyFJCore-1.0.0-cp36-cp36m-macosx_10_9_x86_64.whl (501.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file PyFJCore-1.0.0.tar.gz.

File metadata

  • Download URL: PyFJCore-1.0.0.tar.gz
  • Upload date:
  • Size: 223.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.11

File hashes

Hashes for PyFJCore-1.0.0.tar.gz
Algorithm Hash digest
SHA256 8ab4412f71b38b0b0ce25a63872e1006e99256748631945829a22d510b686fe1
MD5 5067fdfa52d92e4fece10ecf3d49e622
BLAKE2b-256 68121641991f634c9c67bf401c4d68d3d678fc1e08b7d52519eb989cf9d2ee02

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 422.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8a1fa4e529de3c507b0797d131b161bb464e3a0fcab65f1cb268134e4d5fbaec
MD5 d8f7bab49404f76bb0ca15a2a70d4ac6
BLAKE2b-256 bca8ec6338edf51c31637595757504df75dd1903610697fc0c876ba842a4bea2

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 348.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6d97be535f5364cf50a86dc2ed3c88451ee870a579772ca8af09100aaa10e544
MD5 a72d2ece187de2ddbacc353e29bc4fa2
BLAKE2b-256 c2a912a4ba320f4f966343231264e82f369e434993d2d0a265bcbfa0242567f5

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5ef44d1dc2c7933a9e97c1f84e5bb025f298fdaf5b5c790b15b01621b661871d
MD5 11ddd8f93313d16d5934727e7b0b2ad0
BLAKE2b-256 906631cecc5f55e3914af3874ce263ea08093026a0482a569943a6a27b0fc317

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2cbd5db9df14e66c7e02e99da36919978abe07e63e57ae28c584790cdd250729
MD5 2842f583c591233e73ddfda9e91f3f27
BLAKE2b-256 d9fc5cef49d700c06d556a0dc5cc37bd53e7f66658735be97ef6300855f3b018

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1348c5bfcbbdd8aecff63d2eca451abdddcabbdac466d57bcb0398475c739e6
MD5 facfdc0dd0825e30668ec32cec09c53e
BLAKE2b-256 3fa8373618efb48f78d14e3e814b349c0bdb386cde002fb9e7f55481fa5a3964

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 422.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e6c358fbaaf93a69571b2517a0528785dc9a12aaedb11f88c1bd4f1f65add20c
MD5 75e1a165c1b4aec0d8bc0eb8d466ecfe
BLAKE2b-256 5b47e6aed7bfdd4284f912f72be8018b9921bb56283b43fca410ea5d22916855

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 348.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 94ee6f6f09be302c3d994243e3b9d7aa196300a50f56de06947350c259ffce1d
MD5 4e8082101384aa8d6a891110012bd3c8
BLAKE2b-256 b64508e6e565ac17004e63fcb09d401a54068d5e08794bd13ebdfb9cf0988b3a

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 732e6b26e13c0c2d6f1005a472a318002093e4e4d14e602a0c75450a3c78df69
MD5 99363d058e5afc65f3e5ebcfa977f311
BLAKE2b-256 f064714e19ed519c5a62a748e8fd834f6d41232ca059d52c90f52c1772aac85a

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 977c9f70f8918cfbaf4ad02bca305939aba7889dbb9b07023cae1df0882de5e6
MD5 1a7e7056be06862581c8b17bec0afe08
BLAKE2b-256 4d3418a6a904bdc56fb40a68bf6332a7cc2c796188ea7392f438eac07124c151

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a86b91b6b5ad6c209dd7fb9117b7cb8a2201d5bb2a1ba84952efade91064e72
MD5 0f669b37007eee18458673e3308e3c5c
BLAKE2b-256 f47b4403078ca96fdb8c485b920303675891074d39f06fffde2b9e2c6e160d4b

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 421.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7c477c7e76860055a686646c1bf49ac4ef586eedced3364579f0b93c0586514b
MD5 8c872791e5f8e09d93db2e1153b84036
BLAKE2b-256 2d06e601ea8479ac1b6950bbdbc7435ddb4892af3a5c892b3b2774b45c3b82cd

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 348.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0518f6c81f9c68271bdf111a1101a11171b090eb746fb2b351d10611dc3e7fcf
MD5 33e28a7ae3f217315196dd343cab476c
BLAKE2b-256 d5b6c92d9aa3bc0c5ccd75bb38282677596d6d251084a665e3c27db2e03aac06

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d91bf1eafb65eec45d05e2e1f13cb0f9748ad4ed97905677967fa865b8f5add0
MD5 e217abbcb6df75b0ec5d28580cf832a2
BLAKE2b-256 b83f32a46bb5418c1af090baf3f90412754a74dce9af34f99b448a0ea2eaec28

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c249f7c695ce2209df1a6e14f725dc69583a58fb38f30bb24e8a3e47a24f5432
MD5 a17290cac4c6bb48568990ffbd4eb5e6
BLAKE2b-256 8112ab5e5d4a6e7af5f25a0c9f76023fccc34da86507a06cc26a0e63e55a8316

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c726a53c24d5e967f577006bdb78dc192f3d659080fff82d48fd0f07a4ea7db6
MD5 34fa1ff90938ff6cd52ed6b415d384d0
BLAKE2b-256 9898075d5d1c7e42a8dc43b920e31a0077fe30e41622b5af067d34e5c87eb9ab

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 421.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ad9918624893e7e065449e2101023d5de62d6aa66deecf0ae5bcd42e40c8058f
MD5 bec68a585d8a2f08e99cb433c352d1a1
BLAKE2b-256 fc59489f050dbc3256a8185d74d810f8c6902f6dc001a1799dee7c8fdecd79cb

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 348.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 aa153d77079e5649016048d0c5fbc5f78450a99bd99ff05870f3ee034cd91d37
MD5 590fcda040e04b042117903d0f53b8e7
BLAKE2b-256 faf30dc52c8ee1f7e978e0c4b41a5a00e488f4dd8e09df2b229a6b862b49a6e7

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 33476ce2bb4595ab42d70fbf9144afe1081752f6dda8cf9764d95cd06aa40fa1
MD5 35864476e56d2633b877275f4daf887a
BLAKE2b-256 1bf5e6dcde570c9bdee9a67ed718d0faaa52f120393eb95609bd57e129fd88d7

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d8c7ee9d460e5e11e43f4009981083650e6bcaa2c1c12afb0ec07d80597ba4ac
MD5 42cad6f4199423036223b8cc2be8cfd9
BLAKE2b-256 ae8582392c3c0163788a917068c8a001ca3f70563b483dbe829e65a714bf0d8f

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 263e8f4ad3ceaa7413aa41d546bbf9df22bfd3db990b30ebe55ebf248e3e8ed7
MD5 32dbb08edcc9919756851f1bffe6cc5f
BLAKE2b-256 2d453d75f8edfb3cc967a2718307de5f1285f044e1ba9389ce12005a0f0bfda2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page