Skip to main content

OpenGL Mathematics library for Python

Project description

PyGLM

OpenGL Mathematics (GLM) library for Python

GLSL + Optional features + Python = PyGLM
A mathematics library for graphics programming.

PyGLM is a Python extension written in C++.
By using GLM by G-Truc under the hood, it manages to bring glm's features to Python.  
Some features are unsupported (such as unstable extensions) - Please see [Unsupported Functions] below.
If you encounter any issues or want to request a feature, please create an issue on the issue tracker.

Tiny Documentation

Why PyGLM?

Besides the obvious - being mostly compatible with GLM - PyGLM offers a variety of features for vector and matrix manipulation.
It has a lot of possible use cases, including 3D-Graphics (OpenGL, DirectX, ...), Physics and more.

At the same time, it has great performance, being between 2x and 15x as fast as numpy! (see end of page)
(depending on the individual function)

Installation

PyGLM supports Windows, Linux, MacOS and other operating systems with either x86 (32-bit) or x64 (64-bit) architecture,
running Python 3.5 or higher. (Prior versions of Python - such as Python 2 - were supported up to PyGLM version 0.4.8b1)

It can be installed from the PyPI using pip:

pip install pyglm

And finally imported and used:

import glm

Using PyGLM

PyGLM's syntax is very similar to the original GLM's syntax.
There is no need to import anything but glm, as it already contains the entire package.

License requirements

Please make sure to include the license for GLM in your project when you use PyGLM!
(this also includes binary distributions, e.g. *.exe)

You can do so by copying the COPYING file (or it's contents) to your project.

Differences to glm

Instead of using double colons (::) for namespaces, periods (.) are used, so
glm::vec2 becomes glm.vec2.

PyGLM supports the buffer protocol, meaning its compitible to other objects that support the buffer protocol,
such as bytes or numpy.array
(for example you can convert a glm matrix to a numpy array and vice versa).
PyGLM is also capable of interpreting iterables (such as tuples) as vectors, so e.g. the following equasion is possible:

result = glm.vec2(1) * (2, 3)

PyGLM doesn't support precision qualifiers. All types use the default precision (packed_highp).

If a glm function normally accepts float and double arguments, the higher precision (double) is used.

There is no way to set preprocessor definitions (macros).
If - for example - you need to use the left handed coordinate system, you have to use *LH, so
glm.perspective becomes glm.perspectiveLH.

All types are initialized by default to avoid memory access violations.
(i.e. the macro GLM_FORCE_CTOR_INIT is defined)

In case you need the size of a PyGLM datatype, you can use

glm.sizeof(<type>)

The function glm.identity requires a matrix type as it's argument.

The function glm.frexp(x, exp) returns a tuple (m, e), if the input arguments are numerical.
This function may issue a UserWarning. You can silence this warning using glm.silence(1).

The function glm.value_ptr(x) returns a ctypes pointer of the respective type.
I.e. if the datatype of x is float, then a c_float pointer will be returned.
Likewise the reverse-functions (such as make_vec2(ptr)) will take a ctypes pointer as their argument
and return (in this case) a 2 component vector of the pointers underlying type.

glm.silence(ID) can be used to silence specific warnings.
Supplying an id of 0 will silence all warnings.

There is currently no documentation for PyGLM.
Please refer to the source (in Python: *.__doc__) and GLM manuals, references and tutorials.

Unsupported functions

Aside from the unstable extensions,
PyGLM doesn't support the following extensions and methods, due to compatability issues:
The GLM_GTC_bitfield extension,
glm::log2 from GLM_GTC_integer.
glm::packUnorm and glm::packSnorm from GLM_GTC_packing.

Build options

PyGLM can be built from source in a couple of different ways.
In build_options.h there is a preprocessor option PyGLM_BUILD which is set to PyGLM_DEFAULT by default.
PyGLM_DEFAULT will build all of PyGLM's functions and features.

A few other flags exist:
PyGLM_FAST removes PyGLM's iterable and GetBuffer checking, thus making it incompatible with tuples, numpy arrays and bytes objects while increasing overall performance.

PyGLM_NO_FUNCTIONS removes all of the functions of glm and only builds the bare types.

PyGLM_MINIMAL combines PyGLM_FAST and PyGLM_NO_FUNCTIONS.

Example

>>> import glm
>>> v = glm.vec3()
>>> v.x = 7
>>> print(v.xxy)
vec3(            7,            7,            0 )

>>> m = glm.mat4()
>>> print(m)
[            1 |            0 |            0 |            0 ]
[            0 |            1 |            0 |            0 ]
[            0 |            0 |            1 |            0 ]
[            0 |            0 |            0 |            1 ]

>>> v = glm.vec4(1, 2, 3, 4)
>>> print(v + (8, 7, 6, 5))
vec4(            9,            9,            9,            9 )

Speed comparison to numpy

How PyGLM's performance roughly compares to NumPy's performance:
instruction     | np speed (%)  | glm speed (%)
import          |   4.76        |  100.00
mat4()          |   9.76        |  100.00
dot(vec3, vec3) |  28.92        |  100.00
transpose(mat4) |  25.64        |  100.00
vec4 * vec4     |  27.89        |  100.00
mat4 * vec4     |  17.68        |  100.00
mat4[0]         |  49.99        |  100.00

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

PyGLM-1.2.0-cp38-cp38-win_amd64.whl (973.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyGLM-1.2.0-cp38-cp38-win32.whl (810.4 kB view details)

Uploaded CPython 3.8 Windows x86

PyGLM-1.2.0-cp38-cp38-manylinux1_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8

PyGLM-1.2.0-cp38-cp38-manylinux1_i686.whl (5.0 MB view details)

Uploaded CPython 3.8

PyGLM-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyGLM-1.2.0-cp37-cp37m-win_amd64.whl (968.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyGLM-1.2.0-cp37-cp37m-win32.whl (807.9 kB view details)

Uploaded CPython 3.7m Windows x86

PyGLM-1.2.0-cp37-cp37m-manylinux1_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.7m

PyGLM-1.2.0-cp37-cp37m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.7m

PyGLM-1.2.0-cp37-cp37m-macosx_10_9_intel.whl (3.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ intel

PyGLM-1.2.0-cp36-cp36m-win_amd64.whl (968.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyGLM-1.2.0-cp36-cp36m-win32.whl (807.9 kB view details)

Uploaded CPython 3.6m Windows x86

PyGLM-1.2.0-cp36-cp36m-manylinux1_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.6m

PyGLM-1.2.0-cp36-cp36m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.6m

PyGLM-1.2.0-cp36-cp36m-macosx_10_9_intel.whl (3.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ intel

PyGLM-1.2.0-cp35-cp35m-win_amd64.whl (968.6 kB view details)

Uploaded CPython 3.5m Windows x86-64

PyGLM-1.2.0-cp35-cp35m-win32.whl (807.9 kB view details)

Uploaded CPython 3.5m Windows x86

PyGLM-1.2.0-cp35-cp35m-manylinux1_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.5m

PyGLM-1.2.0-cp35-cp35m-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.5m

PyGLM-1.2.0-cp35-cp35m-macosx_10_9_intel.whl (3.0 MB view details)

Uploaded CPython 3.5m macOS 10.9+ intel

File details

Details for the file PyGLM-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 973.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyGLM-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d8ae87962c5689b84810506ebcfbf20b74b99849a182836c7ce8df65cb8af6ff
MD5 2d07c9dfea7d811a629caea07030d0db
BLAKE2b-256 37c5e8c5901b716d46e072e9241b76f29d48f4388ee54803bb7f87eb37df27e2

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 810.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyGLM-1.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6638a3b9e1bca272647b21784e70fb2306f85da74bb40ba1832e32b1c3171c05
MD5 b9bfd9f019a06fa3ef29ff4fe08c1633
BLAKE2b-256 cedb0e93264c52bc0f5f16626db6d80b973a6f3645633854635c507a831133c4

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for PyGLM-1.2.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4e789f9fffc1a2e607984e0883d080b3ee136ef4e5cd18d1c0f9b89701afabe2
MD5 523b1e75d468e6cb0f25153a900beb79
BLAKE2b-256 506b6b416551e1cf92b5fdb2b5ec6de7e3e441d5f73804a0f2179f3aad4ac2d5

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for PyGLM-1.2.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3a5bd99c9cfa1561265ef737b950427585c98c9d2e9c3cf3c8191d9f4eb04b56
MD5 25f4991853088b14b2a3fd7dc879c742
BLAKE2b-256 8350f278cde824739199b9a2fece040a150bc8d18f6d18239b484f17c666c8a9

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/2.7.17

File hashes

Hashes for PyGLM-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 942f65291535cdb4787d6c80f7f6887ecd28c58c12d2dc5cf1241e409ba32fa9
MD5 04c8ed464ca91120ba4c911fbe53be2f
BLAKE2b-256 4819edb9e78fa13b4febd3237c251265a10ccd443bbef7f1a3b1b01374072d88

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 968.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyGLM-1.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 08f5246200d9692431f80d599ee893d209bca4b6b9cdd974817c08c89743aea8
MD5 5239e59fbdd283d6488f3b8524851cc6
BLAKE2b-256 a78e2f2522b3cbf252261e02509ab597a1422b26bcbad078518f51331e0a1c35

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 807.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyGLM-1.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1c2c326a7b24c05dab4cbf000ceed1004d12b18fcb08974a649d8d677db8f9b7
MD5 41569dbd3b627a3a24b07f0a3b6da57f
BLAKE2b-256 9fd9d84fec2ea5e14f4c1af85e9fe461a3954d959ee6f03cd8f7a09b731c96e2

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for PyGLM-1.2.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f698673a49c0ca143d3fa827a641974f92b41b6196af70ac6e3ca0b23bb3c8ac
MD5 34d343ea55e7fbdb0853da60248ed13e
BLAKE2b-256 4d1dff17513dc5aefdabcbcd7564ff9af2dab488a6d30bcce3a87f58ce729e8e

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for PyGLM-1.2.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 14743bd34fd3d91c5680d40ebfa2c640adcfd2d54b4f892d225525c0675f5893
MD5 e62e6717026cc959ca71dfaa5bf3d6a6
BLAKE2b-256 a7bd81a286148957e89f46eb9d561f363b3577cadcd86972208fcc8219859c47

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp37-cp37m-macosx_10_9_intel.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp37-cp37m-macosx_10_9_intel.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/2.7.17

File hashes

Hashes for PyGLM-1.2.0-cp37-cp37m-macosx_10_9_intel.whl
Algorithm Hash digest
SHA256 84e8ab055b568655b8977708232d71e1760bd9f1cda1bad449e5ee880ea6c589
MD5 ce53a4322467e1c76455e2fee7f26896
BLAKE2b-256 59bf5b0f118a7228141ffda853e03f1b8b53c18ae1f20c5ba0778b9af69cb820

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 968.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyGLM-1.2.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6e67dd8fd9b10cdd8fd32c256726c8e5c14bb62ea94fd9319a4d695adf0623bb
MD5 398f5da5ab29b4224d2b1732524b849d
BLAKE2b-256 f9318f63ffd4ff46a2d8ce638f289a99bb6f3990211105ce2558681209a4cf37

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 807.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyGLM-1.2.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 880632511ff8483ff87b70c415c174e92ab8cf78901e6d274299442983ca3e44
MD5 c258ef269b619fd344bde366d4c82198
BLAKE2b-256 5bacf68812e4c47b24ff07c760183b9057999e30b21d334b01da5614d11aef72

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for PyGLM-1.2.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 045b07fd3866a5ad5dcf8844fb2770362a6b60538324ae95f0fd454614bef665
MD5 078968c94ea58dea00e2c77e550da29c
BLAKE2b-256 7758f2a66724ebe4f1d79d84c8914d54759c7d1f0f01c57795c83f053e0b81e4

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for PyGLM-1.2.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 44c8455dd6b51a92ba5cb6358fb046176e01978492153e1e14d5ff1202c04078
MD5 3220d7eb127c1d823eb5e45672da8104
BLAKE2b-256 e46c26146d1eafe777399dbd7d5f6c46846c32ff3ec0db64e0c6c8cf780127db

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp36-cp36m-macosx_10_9_intel.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp36-cp36m-macosx_10_9_intel.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/2.7.17

File hashes

Hashes for PyGLM-1.2.0-cp36-cp36m-macosx_10_9_intel.whl
Algorithm Hash digest
SHA256 727ee3d45b9e12aa439ef10abd06302480f7ed2b0456350d7daa153f98fa6876
MD5 a8df74f878799e953a3cf31e57163dad
BLAKE2b-256 e09c70482aa92aed735bc839b75504fd804b96c0e7a9afda15e3c87984c638e1

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 968.6 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyGLM-1.2.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 f916e4314709136ad257e612888692b63dee880c0786550315a867c7a18703fd
MD5 6082227d1b0fbbf5ce7c1921a11be2d1
BLAKE2b-256 cb7c8e322e2ddde0eed946763488957b8e11098efa271e389f0e379150dcb978

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 807.9 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyGLM-1.2.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 bf92b9d0524233431c6a1341fe3375afa8e4caf0edc61ee62d8b7dc66b9d5a9c
MD5 c2a3fbbac158537504046513c3b0d7f1
BLAKE2b-256 3ea78cb483fe30a5ffe91960c4f1145fe8d3723ca3c32149a7ab2200dc2b6021

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for PyGLM-1.2.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0ad3cf3245a47b5baede07e89da573699412fcaf0ea7500174208d919d58f4a0
MD5 94972688211040f1870dd9fd37340b89
BLAKE2b-256 bb9c475522021b3ea8998aa3b34c186e34d2981db1f5b6506fb636005db1cc16

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for PyGLM-1.2.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b43efc489d6195c01979b9eb517650f4460f53665bc57872eb42b08613fd03a5
MD5 4a112135b03a0a2e8cc69327dfc33414
BLAKE2b-256 aebac34673caf2dbceac399b6f6c50ad568c71f08a9b4ac11ca96a568e3bb9d1

See more details on using hashes here.

Provenance

File details

Details for the file PyGLM-1.2.0-cp35-cp35m-macosx_10_9_intel.whl.

File metadata

  • Download URL: PyGLM-1.2.0-cp35-cp35m-macosx_10_9_intel.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.5m, macOS 10.9+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/2.7.17

File hashes

Hashes for PyGLM-1.2.0-cp35-cp35m-macosx_10_9_intel.whl
Algorithm Hash digest
SHA256 0bcdbd6570a7945f995bbac8c80abec2fd3e8d208b798233bb95244de3d00998
MD5 121ae9cf7bc5b54e23190316073dfb24
BLAKE2b-256 29b90f46181ed6fa4093e7bf0ef993ce895e47fcc8ba618401778e854b6a4b07

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page