LBFGS and OWL-QN optimization algorithms
Project description
PyLBFGS
This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).
This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.
Installing
Type:
pip install pylbfgs
Hacking
Type:
pip install "pip>=10" pip install -r requirements.txt pip install -e .
To run the test suite:
pytest tests
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
PyLBFGS-0.2.0.10.tar.gz
(104.2 kB
view hashes)
Built Distributions
Close
Hashes for PyLBFGS-0.2.0.10-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2595488f4aa536c59ea56b2b951ecdc87fa64c1519d01a4e4b8ba22c35c03067 |
|
MD5 | 6b7806783942b11aabcefb070961eadc |
|
BLAKE2b-256 | b5da0acb9a37a029a1800b65235a34d48cc58c7728bccddd80b524394d28423f |
Close
Hashes for PyLBFGS-0.2.0.10-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7481480dcd5ae7a88e8500482f97dd7a4be3c3829280b5db2bbf5b15b3b4dfe2 |
|
MD5 | a66577e0c4e9a9554e75cb9da3fcecdd |
|
BLAKE2b-256 | db9553a97e9b44e8f355cc16e17825d8ceb83f8886f054ab1fdba9cdbdf5125f |
Close
Hashes for PyLBFGS-0.2.0.10-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66a0f7359c6268d06b9143eceff304819677bc5fcd3c190bafd46766ee49679f |
|
MD5 | 92f7e64a31a07a33faeb2ac2ba59cffd |
|
BLAKE2b-256 | 5a3802dbe8fe1d4f2f8e822ed3ffaf30bd4967c4eb8c9bdcc37788607fbd28a5 |
Close
Hashes for PyLBFGS-0.2.0.10-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 588145d34b968843587568eac7b4c78001ae6bd984e60e47f9243b10536c4006 |
|
MD5 | d7acb2cb5050e2484c35d29e07501342 |
|
BLAKE2b-256 | 57e695611fdc4596184f76ad57f23124cf937234668217d91631e0f01c2f38a5 |
Close
Hashes for PyLBFGS-0.2.0.10-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f632402ecc28faa179eac1e4c8bc2b812cf7003fd4f29f05e4d7cfb21c49def4 |
|
MD5 | 9011ad219f4d4e338664a50c09cce2e0 |
|
BLAKE2b-256 | fedb359951b5275202b4ca872bb5a4eb5c0c62b2921029e36c79898285f812f7 |
Close
Hashes for PyLBFGS-0.2.0.10-cp34-cp34m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 750931df13a7336b34a5c2fed5098bd08584402f54e1b72028b6ba9083cb2860 |
|
MD5 | 0659bb50354741945976bf86430da4ee |
|
BLAKE2b-256 | 6f5297762497bda4a7323bd41b0cba16fe98c837a5843a26ba937b24103d171e |
Close
Hashes for PyLBFGS-0.2.0.10-cp34-cp34m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8483bb1e13d5127067e1ee9419972f3842681b638e402f77a4fff35ad9e9edc6 |
|
MD5 | 51cc93b473df13264ff08e8d726f97dd |
|
BLAKE2b-256 | 5bbbc3010cae09eb1095a79d118a1674cb759e5ff621dea4bcd210ed54cb39fb |
Close
Hashes for PyLBFGS-0.2.0.10-cp34-cp34m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2d9b209f916ce417ed8418ee2ff2f465d246fb50177570ad4d706aeda9a0e86f |
|
MD5 | c8ef955bcd43039e0d181ac7d0d096b5 |
|
BLAKE2b-256 | 46849177260e213e426cbea9dafffa0acede95b737daea713f004064bf61fe22 |
Close
Hashes for PyLBFGS-0.2.0.10-cp34-cp34m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ed711e9860aae8232ddb9df365a3b565197ee368f66bcf5f1bc779cb8e7bc412 |
|
MD5 | 9dd5a8956f5aa4846a31a34ba6f9effc |
|
BLAKE2b-256 | 8bf627869817baf4ae9e29045382daa648035315a5770e329f2a21d10f8c19ad |
Close
Hashes for PyLBFGS-0.2.0.10-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 32ecb6731324da5e8ae57a976521a1d26c4008ab419a76499d933e580c9fbbf1 |
|
MD5 | 2667df95286cbd229d00d9fd6d1dbc6f |
|
BLAKE2b-256 | 80dfdcc33e4769a6c9f4a344ec6b628ca07913d1121fc68471fc304dbb7828c9 |
Close
Hashes for PyLBFGS-0.2.0.10-cp27-cp27mu-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a6f6f068c56ebd9137ee629bff5b5523c6fdb450642855414e61ddb9dad7db6 |
|
MD5 | 9b3cc62c6bbab113029f063ceff55e99 |
|
BLAKE2b-256 | 47ea6a5eb8d32ccefdb5bbe9622c10ae2a83b24b27f08823f6a5ff298fe4a73e |
Close
Hashes for PyLBFGS-0.2.0.10-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f0b2bf6c7771db5737abf2a952e0fa02b02d4931888081d8ebaaf27e15f3c10 |
|
MD5 | f4ea97ba3a5cf13c2650da5b0eb6345f |
|
BLAKE2b-256 | c97ebf80fb4614604d8b2f49eeed48dbee7e91d1889094a5f50f94a24c5f387e |
Close
Hashes for PyLBFGS-0.2.0.10-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5df63ec8053d7bb08a554d7b497174a180757a9347b2033a4032303b5290684 |
|
MD5 | 7ddcdc5bf641d4db4725cb162a5364a4 |
|
BLAKE2b-256 | 2c7576cbb17991d0c6b5a2a3b33fb179c4d446879375174655cc7ecf881a3b87 |
Close
Hashes for PyLBFGS-0.2.0.10-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60424efd848fba0b0ce3b65b2e317d9e296297c58897823d512b16c1e2969757 |
|
MD5 | c9e9d677395390285b7d3c5d90d270dd |
|
BLAKE2b-256 | 3ff3f941acc13ff4eff14d760d33c969f5aaf5f49bc9893aa03688361812be9d |
Close
Hashes for PyLBFGS-0.2.0.10-cp27-cp27m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb610369ed5d5eaace92c629cba4464cce03ad66b69655fca85a0ba74112e847 |
|
MD5 | 7b67149e14b6025557b06f2711ceb2b6 |
|
BLAKE2b-256 | c3cada7c725fcf22b7f33bc64402352b59146c740771f34ddbfdb5f1182fddd3 |
Close
Hashes for PyLBFGS-0.2.0.10-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 361749e1b4df6e512d91bdb6940994a992952c3f45e2e2c264dffaaa453e8603 |
|
MD5 | 251e780c49fd40bbcc6763325cb647ef |
|
BLAKE2b-256 | 717eacb395520d1338b06ffabe3ce91c10c1e99afb0d6369d9b49e0aabbfc9e7 |