LBFGS and OWL-QN optimization algorithms
Project description
PyLBFGS
This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).
This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.
Installing
Type:
pip install pylbfgs
Hacking
Type:
pip install "pip>=10" pip install -r requirements.txt pip install -e .
To run the test suite:
pytest tests
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
PyLBFGS-0.2.0.12.tar.gz
(104.6 kB
view hashes)
Built Distributions
Close
Hashes for PyLBFGS-0.2.0.12-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b92a48da1db438dedb05baa5245521c57d8f3c0fcaca019ad3a21cf34edf2f7 |
|
MD5 | 90ea73914c077c1f265530e1eee10f55 |
|
BLAKE2b-256 | acd3d23b414c1ca93c613747005fe3628f0e1005d59ac8f8925ace6c26740ef3 |
Close
Hashes for PyLBFGS-0.2.0.12-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4c3203cb0cbe6f922a9986e70b87713df80e31d0a040fc5bab4fe8ac31d0fc0c |
|
MD5 | 1601fe2cde98987672b4133cd9b5cd56 |
|
BLAKE2b-256 | b7790ab4540f88d7175010a6d6057ac5f6f514ca2e87ae713a2b2312959359d1 |
Close
Hashes for PyLBFGS-0.2.0.12-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6af2f3e5724f228765b70ac11891ea49e6f245b01510034e5285de6d9703b03e |
|
MD5 | 7add0b11462f1d22b5866f416a83352a |
|
BLAKE2b-256 | 486d9c14a48ac9137a7988ea4038289a5bbe08b28664b52a764032d1d710f94d |
Close
Hashes for PyLBFGS-0.2.0.12-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 67f9edc06242bd86bfae5a71b600d1abc50b4caefebd82d4d1ddfe9cec19c8d8 |
|
MD5 | 80645b1f1b304ff91fc6b6a83606dcf6 |
|
BLAKE2b-256 | 7f5eb986adcbf57ea54153b387f311427eac2e78af67e53f3b26c1c8c8db2245 |
Close
Hashes for PyLBFGS-0.2.0.12-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 41a053d8ceb98325729c29419968948417fe148f5dc5b31ffa7124792ee1742d |
|
MD5 | 3bfd357cfcbab766f0400a04b6eeb704 |
|
BLAKE2b-256 | 59092a7ffe7128df54754d8d8c4e8b86612c5b538bf219d876a7dac7261eaf37 |
Close
Hashes for PyLBFGS-0.2.0.12-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 00ea6bff21b78ff487aa765b1ba6f6d3a27d905d0eef481acff7b15ef79146db |
|
MD5 | fc96e5c567a06bfb7f1260208bbab9b7 |
|
BLAKE2b-256 | ea4e52426734ba638fd08dc8b1b35b7dad29d11e829deb35c527eeca93693c7d |
Close
Hashes for PyLBFGS-0.2.0.12-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3128fd70fde66ea949822174c4ce7b757cfad08731a35be2b20c572534fa1c21 |
|
MD5 | cf2f36cf8319cb1154e7712bcd3b04ec |
|
BLAKE2b-256 | a3c96380b3610fb9c6b7b600bf35cd68ffda72bc1d80457537da86d83900a288 |
Close
Hashes for PyLBFGS-0.2.0.12-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d02bfcd43fa9bd22b9467dc71d26648ab3e3219f55719b6b210eb003b96d6c4f |
|
MD5 | a1e155fd21d607e2f9e047441310ecb4 |
|
BLAKE2b-256 | 0d3b3f490e1a9da9e4fc49a61e984a327eb3b907ef86d5ed67cf14e16a8519ea |
Close
Hashes for PyLBFGS-0.2.0.12-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b43cc6de5895e63fc8d9f25c64686769f41ebf83d701e394b3b4d4965dfa6e6 |
|
MD5 | fb64724cf8e815bcb9770151c2e860ee |
|
BLAKE2b-256 | fdb5505d3730827c32b59c531498dca90c3c987a1b287c21a6b20722214dedc7 |
Close
Hashes for PyLBFGS-0.2.0.12-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 168b120d5ad4a0051f252ac2c95163edc416ad417849aff01e7966057708cd37 |
|
MD5 | 79d8bd633a7802076cf57daeb59bdc0a |
|
BLAKE2b-256 | e8175b4b4381590222e41f360325250011fb8625b7b8d086e7a385994c788610 |
Close
Hashes for PyLBFGS-0.2.0.12-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5151136762b763014bbe65adc7c533bdc01e1769130abbbce43de260d7fe54c |
|
MD5 | 1eff5ef78649c85484a41b7d7ea2cb55 |
|
BLAKE2b-256 | 0b02227d3ca3c359ecdf7c1db4baa8850e951f7c21a2c15114d00e5453a97dca |
Close
Hashes for PyLBFGS-0.2.0.12-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a002b173fa0ba2f713ac7e79fa71a4d8112810f7e20410fbe53bab302ddfb79c |
|
MD5 | 1964619783e677e2fbddbc645eefd929 |
|
BLAKE2b-256 | 4c4ee57b21f0204cc87e6c01885b777f09845889b22956741b871f02ce90ff67 |
Close
Hashes for PyLBFGS-0.2.0.12-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | eed4799c1bf155a72a56d365e9bfe6fd71a489aa613a9f60e0d65795d8680fae |
|
MD5 | fa8fbdd82a859314c4885df6c415502e |
|
BLAKE2b-256 | 14816e403a44ce2de6507a3c6dd31594085603e0d66f42e1054b5c3fe8db6a2b |
Close
Hashes for PyLBFGS-0.2.0.12-cp34-cp34m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0be7ce4c95bc0dbec5337f4597b4bcc02218d18248f44ab525754b672bef04f4 |
|
MD5 | c4cff5091f66b9d01f5b167ac8d27238 |
|
BLAKE2b-256 | 17550346abe611258e0573cae665f31f65a4ad080f4e220594cea62fab4c6b7d |
Close
Hashes for PyLBFGS-0.2.0.12-cp34-cp34m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bffb399721cd3bd7b7cffe24bc2cc52505fce567acc1823e307697134965408a |
|
MD5 | 60376b7c849a06b8e90c9a34513eaa6a |
|
BLAKE2b-256 | ad7e9f3460d7566e3487d5548712932a7882e46d1d72d0295d84eb30a17431e2 |
Close
Hashes for PyLBFGS-0.2.0.12-cp34-cp34m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c162cb5d1e970c14b17d938d540f2922d84620d08ac5cc9d8d660f087a35fe3e |
|
MD5 | 87355d49b5359541c3e4e0162e7986f0 |
|
BLAKE2b-256 | 6ba028bd402bd0b0527954b309802a2dd8fcd18481b194c31bd35f7fff21c531 |
Close
Hashes for PyLBFGS-0.2.0.12-cp34-cp34m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5986188516253aa556e75911fbc17c38b192d419f52dec2cc4525b802570c31b |
|
MD5 | fd661d2ff8629c6a190d9840c65be1cf |
|
BLAKE2b-256 | eec273d56c77308e8952c649bdfff02483619667f33dd89693d4c9873f02a291 |
Close
Hashes for PyLBFGS-0.2.0.12-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8bc72fab4a35e37b250bac7e732f1426a8a4bd2d2a17cc23a8aa219d6746dea7 |
|
MD5 | dc878e0abb16bed20515e723d5ee3e6b |
|
BLAKE2b-256 | 2c80301281070fd2e138162a1c1fc843f55e02becca71c05cc555cd1cb1afc49 |
Close
Hashes for PyLBFGS-0.2.0.12-cp27-cp27mu-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e951f18016e2be0919af50a575740973ebffe35fd8e8fc01f4a02ed5cdc54c47 |
|
MD5 | 3ff3c00df0305b071e5f84c2db5de0a7 |
|
BLAKE2b-256 | 9f8f3f8d53efb13bb0104dc5519685e0bd39a92929fa47a8b4038b6d8385775a |
Close
Hashes for PyLBFGS-0.2.0.12-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ae3a2ad4b4b7401f8754171572ba113dec427bb93bbc6d5feb57601071ddd6b |
|
MD5 | c00264c67b4678da08c75da02111d521 |
|
BLAKE2b-256 | dde04c41e09c09705feab6cc4adee3df7fffb8c418bd221aed580d4253a3e41e |
Close
Hashes for PyLBFGS-0.2.0.12-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd11c5d8e17aaca2944f16080d3c5ae94120fa9ade8573b6bd5fa7f7f803cb32 |
|
MD5 | f5fabbcfe61f6dd5ecf4f1b5720e58be |
|
BLAKE2b-256 | 9ec0dd890aecdbed2960d2e0617de89505e7a47d124d4526f1a722a7671b9a70 |
Close
Hashes for PyLBFGS-0.2.0.12-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3d1be60b87e6bf994b774f02ec83ff69ae8f98e136ce413f05545a86f203c3c0 |
|
MD5 | 8d3625d2233e435d16d5809c0aca87f7 |
|
BLAKE2b-256 | f0c8cf07dd95fc7d0e02d806bf5cadb3854baa74910573d6ffca88153a14f3b8 |
Close
Hashes for PyLBFGS-0.2.0.12-cp27-cp27m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a35492284be87f69c73a6be8fb0e87cac48db7d800f0d33dd8dee2a458a0bcd0 |
|
MD5 | 3f9fbe1053aee9f2e0c118f54323cc33 |
|
BLAKE2b-256 | 731387175faf87edc06a42a74c09f763c5c5cc0720d23550ba1cb21e2fc43750 |
Close
Hashes for PyLBFGS-0.2.0.12-cp27-cp27m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 89218fc4a44ada12bf946e9bdad291dccecad09c89026235f82e11bf78f3a8be |
|
MD5 | 30d7c784be6bc90652e7b984cf11720c |
|
BLAKE2b-256 | 47ec1abc88888cc0740043dd2a5008b9c07564d5ec3540c5a69ef1b41a9d9f6f |