LBFGS and OWL-QN optimization algorithms
Project description
PyLBFGS
This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).
This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.
Installing
Type:
pip install pylbfgs
Hacking
Type:
pip install "pip>=10" pip install -r requirements.txt pip install -e .
To run the test suite:
pytest tests
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
PyLBFGS-0.2.0.13.tar.gz
(105.2 kB
view hashes)
Built Distributions
Close
Hashes for PyLBFGS-0.2.0.13-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bf470a8459f19d2ed55aac4e006d73666fa0506e1863a7585d8cdf96225a364f |
|
MD5 | c8d3db6687df09370840d41796552ad3 |
|
BLAKE2b-256 | f3f6af05d44989cd9adc8c24fd2104a74b8585ff8c77025e2a2aecae46a0da81 |
Close
Hashes for PyLBFGS-0.2.0.13-cp38-cp38-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4ed2d4c53c2915dd87be75ee209363078772b9bc0386dd6a6a268c1cf3815fbe |
|
MD5 | a5796fb4d46705ca9f69f9d5ec787236 |
|
BLAKE2b-256 | 1e079c4f3ec5a58aad693e4a30ab64d722299e04871e227bf392b490d6b42eca |
Close
Hashes for PyLBFGS-0.2.0.13-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0683e1c03df4c682c0b702db6e311b4bc6b40bfa8ac0bb8195057089b7849c47 |
|
MD5 | c4d9c26ff911d2b6cb17cf38ee558400 |
|
BLAKE2b-256 | 089ca789a72afff6fe13b7b2a1f3cbb881ac67dd5ad9eafd09469b35850539da |
Close
Hashes for PyLBFGS-0.2.0.13-cp38-cp38-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9607c09916d8419502867711d571950fc8beada2bb19d29276cf0e6755540b73 |
|
MD5 | 2c673d5d2640fc2ecd341df955cd08ff |
|
BLAKE2b-256 | d6deb1e3f3da9a85ea1f251ef01f0ba3bab1d40e847187154aab9dcb87532950 |
Close
Hashes for PyLBFGS-0.2.0.13-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d46503dc82eae78f144d64933b9ffa2e497c6577d94cba18fbd0af4370b8ec3 |
|
MD5 | 389c7dc9d3fb1fcf80c9fe5adf15b22f |
|
BLAKE2b-256 | a36dc9b30f53ccd0cb57f351cdf2e448a7d0e8b124afe86b366c778d9cd512a3 |
Close
Hashes for PyLBFGS-0.2.0.13-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f37960d4e3c8c8dc3960c07d48afb11802dcd5d3cc875acf560aa2818c868985 |
|
MD5 | 8d691226d908452e89c9d5ce2397280c |
|
BLAKE2b-256 | 2d238934dec996f891b6e65feacd86ef02ea4e7f0248a4277082a13e3829d7d1 |
Close
Hashes for PyLBFGS-0.2.0.13-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0dbe94b27640c34a0afc17f056cfb2da8fe02b2e17b6cd7666a7365ba28c2dbb |
|
MD5 | 08206be2ef4e7da3d13391d33da90c4e |
|
BLAKE2b-256 | c261218ecb83f22da59c56967c2e6bbb1787a14a9ca86426c62cf1994bde7d93 |
Close
Hashes for PyLBFGS-0.2.0.13-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9476c75f0dc48ec14f5b176d847ad63db41489dc5037b8e329bf5e39a23d74c3 |
|
MD5 | 9ea449044e360b7db05f43440e985c48 |
|
BLAKE2b-256 | 9a28adf0d5df22ffab7cd2724391942b508fe08111499daa374c77ca50356cc9 |
Close
Hashes for PyLBFGS-0.2.0.13-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b158e4b51c6c0d2a11f4864fe46ca1ac92d44e3df77d84d7772f7674128c8b3c |
|
MD5 | baf3e0bc009266a227a8d5f343f0db44 |
|
BLAKE2b-256 | 88c72af241252d4295576fbe7072a5f6bf8d49b7b7acc644c09c8d00e069ffc9 |
Close
Hashes for PyLBFGS-0.2.0.13-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d068c92e4dd40771d1151c82a1b525823754deb8c3caa2329f64f2da6a24cffc |
|
MD5 | facc4a6f02e468d2b42ca5e7131a69ce |
|
BLAKE2b-256 | 9c000c7dba8690afa8bade31124e63c23ffc817d6a6f4adacf24916f0f1108b1 |
Close
Hashes for PyLBFGS-0.2.0.13-cp37-cp37m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa5f44677981539273f1ed9a3f364f961544427d9e9ee82c107eb03e13806800 |
|
MD5 | bd70b1d66ad3fd25506df63e0fc1c2d2 |
|
BLAKE2b-256 | 5d71231734ec1b1bb861e9912a0bda0d3f5a79c2e40072d21d4d8c7954d5e405 |
Close
Hashes for PyLBFGS-0.2.0.13-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b949e88f81fc3b7528494ab7a5d8340e88c5e88883132a8413454a4a19620ae8 |
|
MD5 | ccb1e128040aca5f69c07d8985e29993 |
|
BLAKE2b-256 | 5fe366fb9828a8452ad0a3b10eec9624456631f8bc10517121cbdb044b3443a1 |
Close
Hashes for PyLBFGS-0.2.0.13-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea969344cf136ef5e56c7a57c648f8bbdba48f2bcb8a104f0ad9aadb0f825d82 |
|
MD5 | 41077c511fe16266ee252c01e1af0827 |
|
BLAKE2b-256 | a75e4ce202a75dda34c7d98c7a8707c752239e4d28bd2f0bb93483c80795d987 |
Close
Hashes for PyLBFGS-0.2.0.13-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 49372e7324deca3dfa04afb8de9d49c70b4f9e18572d199f0a3c22d065fc0502 |
|
MD5 | e5d90507c682d1576f6524e7197911cf |
|
BLAKE2b-256 | b85bb8e1ef62e5e5b034ce5ae919b64158ec8da4f64c995444aec7fd96e8ec42 |
Close
Hashes for PyLBFGS-0.2.0.13-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c5245dc72550de2be892772bace941f83d71dfb75b75d20a65c7b52272ca7f87 |
|
MD5 | 938b52cf419d1d24f703d8cb75373673 |
|
BLAKE2b-256 | 842d6d95ec12ccecff3e35b8183f30b2b36a66b27d9518a3b3cde864dca9adc0 |
Close
Hashes for PyLBFGS-0.2.0.13-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ae16abcebf27fffb2e7ed1365e17ac1e2d97e4bfaa827aca25c1361ea2f90df7 |
|
MD5 | d88ed23a6caa73642f5176b2b6fcea0f |
|
BLAKE2b-256 | 0998a5606106cdf6b4052b8f277a662453c209e19482beaf457a9f9d2b1c7d19 |
Close
Hashes for PyLBFGS-0.2.0.13-cp36-cp36m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f50a9c3c9061f23464be9d28d3fd8d215d5fce9eb3630a6ea68fbdb14caec9f7 |
|
MD5 | 6e15dfb5801b0d91230e7c8252402237 |
|
BLAKE2b-256 | 11b0b799ba7ce5de0ef0a039f023abfcc8295022812f0fdbaefcf8828f78b829 |
Close
Hashes for PyLBFGS-0.2.0.13-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d23576de63b3f6f8af7b9ca668e08edd50d48851f0027f7fe2cf056c7d02be15 |
|
MD5 | 6896e5fdb010a096978c9b62f27b7d35 |
|
BLAKE2b-256 | 580dc8c2d979fc5b6f87927f752d5d7b8c46ec7842c6c6592abb962da0cd7f09 |
Close
Hashes for PyLBFGS-0.2.0.13-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b871b2fe614565cd58eb6b37b3785386620ed7aeaf48ca2eb04f80fcd07f704 |
|
MD5 | 3b2d87cc9c20ad782469c74767b50500 |
|
BLAKE2b-256 | a9ded4014a03bd0aad18e3076ac305e26f971d9de7877b15fdf995abc41ab26d |
Close
Hashes for PyLBFGS-0.2.0.13-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 156f9d06f72a7406be95adefccdfd42621514b24072bcf436c87882535ddf2a7 |
|
MD5 | 8918fae4d1bf466d9953fd923ea8bbc0 |
|
BLAKE2b-256 | c1dca5893bad4d2e83cfb5b4c193533c51c330a74017d8ad72aa23ad9f18e10a |
Close
Hashes for PyLBFGS-0.2.0.13-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1fe59f0347b30376d0e3b064462e15d919a2c0f2ffc59c99858ffcb45c97598c |
|
MD5 | 9d0d40439f5f344126f3950af890b5f7 |
|
BLAKE2b-256 | c7d4f5d6f7cc88142558779dfc64c780013610df1606ff2974e69352fc5c47f3 |
Close
Hashes for PyLBFGS-0.2.0.13-cp35-cp35m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0546c27dfe8e8cbd8c8025638108af3200f1e50516e1547f4f8f72e5d77daea |
|
MD5 | aab63f13a9408f639fe8451c2929496f |
|
BLAKE2b-256 | 4d8159978413f1a5e073f8983f65092a476684eb09077bd881d87b5a99c1cf28 |
Close
Hashes for PyLBFGS-0.2.0.13-cp34-cp34m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9db0575ce0fbc4a6c3ea758b142da45e6236d8d0aed8724faf8b8716d72bc8c1 |
|
MD5 | 3ac80d68eedc3373f28d5e54c1822e4a |
|
BLAKE2b-256 | 850ece4824614397c28abdaa01e885e39da33d6f28a3fc30a2d356c167ba8452 |
Close
Hashes for PyLBFGS-0.2.0.13-cp34-cp34m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b571b34643b59692b340df31ef90c086e2eb431b1b84ce49ae0e03e45f4a790 |
|
MD5 | 4dc136c1533d0c7f9bf003eebdf58070 |
|
BLAKE2b-256 | 2a8c4301d3f94d9b9fadead3ee3f10114be867af12b3ef6fd5963478527ec1e1 |