LBFGS and OWL-QN optimization algorithms
Project description
PyLBFGS
This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).
This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.
Installing
Type:
pip install pylbfgs
Hacking
Type:
pip install -r requirements.txt cython lbfgs/_lowlevel.pyx python setup.py build_ext -i
to build PyLBFGS in-place, i.e. without installing it.
To run the test suite, make sure you have pytest installed, and type:
pytest tests
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
PyLBFGS-0.2.0.5.tar.gz
(86.5 kB
view hashes)
Built Distributions
Close
Hashes for PyLBFGS-0.2.0.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d75c6b7c30bfe7799d13c523baea86c0ee7b6c08e3f8f6d6297a8c5ee767931 |
|
MD5 | a48c82476c4f585f961190a58f57b686 |
|
BLAKE2b-256 | c25f0cae146d1777a5bc382e842d895222d9c9502b876c1ec7c98ece90393e01 |
Close
Hashes for PyLBFGS-0.2.0.5-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f94876fbdfe28f77f440b7d25884de6da8df054b129af2356eaddf478dba34d7 |
|
MD5 | 76ac4c97979a66326c0c932bc2f1c07e |
|
BLAKE2b-256 | 84907cef6d2d319df9f2a7694ffd74817e79d86eccab903a90897c8d28b1f012 |
Close
Hashes for PyLBFGS-0.2.0.5-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2292cfdaa2603cf64cfe5cfc21b90378072a1833eba9a75aacca375c99d4619f |
|
MD5 | 02fd2bd2e4b58df8b218f4c3071960aa |
|
BLAKE2b-256 | 522aece0417b9381527a09a0723e6177852e0daff916fcbf2ff4e406ed620920 |
Close
Hashes for PyLBFGS-0.2.0.5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 92b3bfe1991c5741263f2b933ed1fa2cbea01031c098a2c74d9199c65c3de9ef |
|
MD5 | 2f974efc2d4d5d0a215369a66c14f74e |
|
BLAKE2b-256 | 541be8ec3ed4251b757e27b1083b6631fcef3945c5ab3501ed45d878d11d12d1 |
Close
Hashes for PyLBFGS-0.2.0.5-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2a166ac9b68c65c2039fa6388f2bc9d52f2a723751ea3c79464cc6d0ee9a0076 |
|
MD5 | fe6647e2ef0ea5091100a6cfa82a2e97 |
|
BLAKE2b-256 | 6ba9ea6a8dde8b835a5d70d09aec19a1101caf04bc01936c698bfea9e4a461ba |
Close
Hashes for PyLBFGS-0.2.0.5-cp34-cp34m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8eca24a4220961b9e1cc9064a7a9bc1518b59bc1d285476e67bd113a52a89db |
|
MD5 | 912fe144434d98eddfe62777d8158ec2 |
|
BLAKE2b-256 | 76367076e417a5515c730e8a939de5e50219aa1edf3a14bcccc93eec5c1e0aea |
Close
Hashes for PyLBFGS-0.2.0.5-cp34-cp34m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d710718d0ad1e210d1affd79e88162ec81858fa1517addea982bd3ce44c64be9 |
|
MD5 | 7fe334b88a28b4d710d57543b531b412 |
|
BLAKE2b-256 | e638d7ca15b984cb10464ad2aefd3b8b64877d825045dfc6ab9265808eb21059 |
Close
Hashes for PyLBFGS-0.2.0.5-cp34-cp34m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 831733998f3d58ff9ebc574b094f48e7fe7cc8ab3c3f5034b7032c577591b944 |
|
MD5 | 2e95c9b5f1014018f458bdd5dbf45bc3 |
|
BLAKE2b-256 | a1f4f4697c8c2ef1883e0f2e4e528af744196b2b061b85bab39d61c848fbcef9 |
Close
Hashes for PyLBFGS-0.2.0.5-cp34-cp34m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a741fe3aa2f5aa37d438f2031325960f14234a9cc2f8314ff3a17a6110f044da |
|
MD5 | 2f3fb7c57a59979fefc912f75f68584c |
|
BLAKE2b-256 | 535f993ee1d33070cfb70fa9c19ccfdd0a8a466ab07b24497d96c88f9663d855 |
Close
Hashes for PyLBFGS-0.2.0.5-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9210d2d36c49f49da6eabf4bec5d6871cbb2b6ffe6bfcdf871405c83ae945430 |
|
MD5 | 18f31354bcdb8d27e6daaee67605ccc0 |
|
BLAKE2b-256 | c0e582a91e22940c0b9803db8230d4f3025dd026678b985dbe417fca2d2811f8 |
Close
Hashes for PyLBFGS-0.2.0.5-cp27-cp27mu-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 26a2136a173d21914240778eed551ad19e68415cb83caf9a90f55e833b2e96ab |
|
MD5 | a5977dad9952562667bc4ac21544fbc7 |
|
BLAKE2b-256 | f2886f3e3a4b292808b7cbf30146f47ef19a14d76f2bf92b4f34922d96d43d2f |
Close
Hashes for PyLBFGS-0.2.0.5-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27354d4e4e195511cd96805773b248b37477618c6f40db7a4b3a1173d354c147 |
|
MD5 | 7b4489439a274b0c2bac075515aa0def |
|
BLAKE2b-256 | ea211f7faeac5d3e2fecb7f61136535e128cb0cc734208429316b8544ad9a75a |
Close
Hashes for PyLBFGS-0.2.0.5-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1ccc0a25ceb85d1cbe805f99cb643bba0a5c8044f2d1ca55c2f66923c6416836 |
|
MD5 | 96ab722f552bc47d93947047e06bf457 |
|
BLAKE2b-256 | 83256c2b19295e5db4710a4deb864ee5580deb85b98f2e39325db83153bd5051 |
Close
Hashes for PyLBFGS-0.2.0.5-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d4c8ff2d9769d30f3a6ab38b3c81dbe5a30ec469810437cad57bb904a93df1c |
|
MD5 | d2c7a3a838205f12773ff91a5a818b1e |
|
BLAKE2b-256 | 0674797c33f7e14d25cadc9897179a2660e80ebfa8a171d9a15a9f3e263ab7d7 |
Close
Hashes for PyLBFGS-0.2.0.5-cp27-cp27m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 39ce2cf439eed129cf7e22921270ab636772dce2301105ad4f8e7a201c9427f0 |
|
MD5 | 4f1b7245fda896a00dc9c74b02bd76af |
|
BLAKE2b-256 | f6ba496b11be3c4946d47a804ed64cb7d28da8978183a78f3a4c2ebf703a4346 |
Close
Hashes for PyLBFGS-0.2.0.5-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9bdad724f88827e6e531466544801b9912c0d33468c80ce79ed4ec63ee829ef0 |
|
MD5 | f0eeec42f74925c71546b028289b79f1 |
|
BLAKE2b-256 | 2d2eec85346f1375b1a6bdbd7cca03fc61305a79062ce7d9187e80b89d549678 |