python wrapper for scalapack
Project description
PyScalapack
PyScalapack is a python wrapper for scalapack.
Documents
Load scalapack
It is needed to load scalapack dynamic linked library at first of all step.
from PyScalapack import Scalapack
scalapack = Scalapack("libscalapack.so")
Create a context
Create a blacs context to do other blacs or scalapack operator.
from PyScalapack import Scalapack
scalapack = Scalapack("libscalapack.so")
with scalapack(layout=b'C', nprow=1, npcol=1) as context:
pass
Create an array
Create a blacs array, and fill it with random generated by numpy.
import numpy as np
from PyScalapack import Scalapack
np.random.seed(0)
scalapack = Scalapack("libscalapack.so")
with scalapack(b'C', 1, 1) as context:
array = context.array(m=128, n=512, mb=1, nb=1, dtype=np.float64)
array.data[...] = np.random.randn(*array.data.shape)
print(array.data)
[[ 1.76405235 0.40015721 0.97873798 ... 1.30142807 0.89526027
1.37496407]
[-1.33221165 -1.96862469 -0.66005632 ... 0.70104134 -0.41747735
-1.09749665]
[ 1.71230522 -0.79211502 -1.04552456 ... 0.28376955 -0.28219588
-1.15820319]
...
[-1.47166838 0.82070721 -1.1493715 ... 0.07881221 -2.63213675
0.75161925]
[-0.67473808 1.78800397 0.06002943 ... -0.23778156 -1.14289687
-1.31748978]
[ 0.26861843 0.26574383 -0.0437187 ... -0.29171979 -0.18048776
0.37474441]]
Call scalapack function
Call pdgemm and compare it to product calculated in numpy.
import numpy as np
from PyScalapack import Scalapack
np.random.seed(0)
scalapack = Scalapack("libscalapack.so")
with scalapack(b'C', 1, 1) as context:
array = context.array(m=128, n=512, mb=1, nb=1, dtype=np.float64)
array.data[...] = np.random.randn(*array.data.shape)
result = context.array(m=128, n=128, mb=1, nb=1, dtype=np.float64)
scalapack.pdgemm(
b'N',
b'T',
*(128, 128, 512),
scalapack.d_one,
*array.scalapack_params(),
*array.scalapack_params(),
scalapack.d_zero,
*result.scalapack_params(),
)
print(result.data - array.data @ array.data.T)
[[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]]
Generic variables
f_one
and f_zero
is used to get the floating 1
and 0
by selected scalar type, which is useful sometimes.
from PyScalapack import Scalapack
scalapack = Scalapack("libscalapack.so")
print(scalapack.f_one["D"] == scalapack.d_one)
print(scalapack.f_zero["Z"] == scalapack.z_zero)
True
True
Generic functions
Some function such p?gemm
could be selected by pgemm[char]
where char is one of S
, D
, C
, Z
.
But this is not applied to all functions, since it is manully mapped. We only map the function we are
using currently. If you want to add some other scalapack functions, you could add the mapping by yourself,
or just create an issue or pull request.
from PyScalapack import Scalapack
scalapack = Scalapack("libscalapack.so")
print(scalapack.pdgemm)
print(scalapack.pgemm["D"])
<function Scalapack._fortran_function.<locals>.result at 0x7f0a0a35dbd0>
<function Scalapack._fortran_function.<locals>.result at 0x7f0a0a35dbd0>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file PyScalapack-0.3.7-py3-none-any.whl
.
File metadata
- Download URL: PyScalapack-0.3.7-py3-none-any.whl
- Upload date:
- Size: 6.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 91e3aa1166c381485988e4d612ef7cf9ffcf31a410df511d2517dbcf03e9b2f2 |
|
MD5 | ab11402e25f00eb308f3766cc87d1f77 |
|
BLAKE2b-256 | 088fc50464fcf08ea24c2d732440c24570be7698f58c5cd633d159de9edce57d |