Random Number Generator: API for the C++ Random library as a c-extension for Python3
Project description
RNG: Random Number Generator
Default Random Engine: Mersenne Twister 64, with hardware entropy. Additional engines and seeding strategies are planned to be available in the unbounded future. More info about MT64: https://en.wikipedia.org/wiki/Mersenne_Twister
The RNG module is not suitable for cryptography, and perfect for other non-deterministic needs like data science, experimental programming, A.I. and games.
Recommended Installation: $ pip install RNG
RNG is not intended to be a drop-in replacement for the Python random module.
Number Types & Sizes:
- Float: Python float -> double at the C++ layer.
- Integer: Python int -> long long at the C++ layer.
- Input & Output Range:
(-2**63, 2**63)
or approximately +/- 9.2 billion billion.
- Input & Output Range:
Random Binary Function
random_bool(truth_factor: float) -> bool
- Bernoulli distribution.
- @param truth_factor :: the probability of True. Expected input range: [0.0, 1.0]
- @return :: True or False
Random Integer Functions
random_int(left_limit: int, right_limit: int) -> int
- Flat uniform distribution, distributed according to the discrete probability function.
- Parameter order does not matter, that is to say, it is no longer required that lo <= hi, it just works.
- @param left_limit :: input A.
- @param right_limit :: input B.
- @return :: random integer in the inclusive range [A, B]
random_below(upper_bound: int) -> int
- Featuring The Typhoon Engine.
- Flat uniform distribution.
- @param upper_bound :: inout A
- @return :: random integer in exclusive range [0, A) or (A, 0] if A < 0
random_binomial(number_of_trials: int, probability: float) -> int
- Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
- @param number_of_trials :: how many times to flip a coin.
- @param probability :: how likely heads will be flipped. 0.5 is a fair coin. 1.0 is a double headed coin.
- @return :: count of how many heads came up.
random_negative_binomial(trial_successes: int, probability: float) -> int
- Based on the idea of flipping a coin as long as it takes to succeed.
- @param trial_successes :: the required number of heads flipped to succeed.
- @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
- @return :: the count of how many tails came up before the required number of heads.
random_geometric(probability: float) -> int
- Same as random_negative_binomial(1, probability).
random_poisson(mean: float) -> int
- @param mean :: sets the average output of the function.
- @return :: random integer, poisson distribution centered on the mean.
random_discrete(count: int, xmin: int, xmax: int) -> int
- @param count :: number of weighted values
- @param xmin :: smallest weight of the set
- @param xmin :: largest weight of the set
Random Floating Point Functions
generate_canonical() -> float
- Evenly distributes real values of maximum precision.
- @return :: random Float in range {0.0, 1.0} biclusive. The spec defines the output range to be [0.0, 1.0).
- biclusive: feature/bug rendering the exclusivity of this function a bit more mysterious than desired. This is a known compiler bug.
random_float(left_limit: float, right_limit: float) -> float
- Suffers from the same biclusive feature/bug noted for generate_canonical().
- @param left_limit :: input A
- @param right_limit :: input B
- @return :: random Float in range {A, B} biclusive. The spec defines the output range to be [A, B).
random_normal(mean: float, std_dev: float) -> float
- @param mean :: sets the average output of the function.
- @param std_dev :: standard deviation. Specifies spread of data from the mean.
random_log_normal(log_mean: float, log_deviation: float) -> float
- @param log_mean :: sets the log of the mean of the function.
- @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
random_exponential(lambda_rate: float) -> float
- Produces random non-negative floating-point values, distributed according to probability density function.
- @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
- @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
random_gamma(shape: float, scale: float) -> float
- Generalization of the exponential distribution.
- Produces random positive floating-point values, distributed according to probability density function.
- @param shape :: α the number of independent exponentially distributed random variables.
- @param scale :: β the scale factor or the mean of each of the distributed random variables.
- @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
random_weibull(shape: float, scale: float) -> float
- Generalization of the exponential distribution.
- Similar to the gamma distribution but uses a closed form distribution function.
- Popular in reliability and survival analysis.
random_extreme_value(location: float, scale: float) -> float
- Based on Extreme Value Theory.
- Used for statistical models of the magnitude of earthquakes and volcanoes.
random_chi_squared(degrees_of_freedom: float) -> float
- Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
random_cauchy(location: float, scale: float) -> float
- @param location :: It specifies the location of the peak. The default value is 0.0.
- @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
- @return :: Continuous Distribution.
random_fisher_f(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
- F distributions often arise when comparing ratios of variances.
random_student_t(degrees_of_freedom: float) -> float
- T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
- As degrees_of_freedom goes to infinity it converges with the normal distribution.
piecewise_constant_distribution
coming soon- Produces real values distributed on constant subintervals.
piecewise_linear_distribution
coming soon- Produces real values distributed on defined subintervals.
Engines
mersenne_twister_engine
- Implements 64 bit Mersenne twister algorithm. Default engine on most systems.
linear_congruential_engine
- Implements linear congruential algorithm.
subtract_with_carry_engine
- Implements a subtract-with-carry (lagged Fibonacci) algorithm.
Engine Adaptors
Engine adaptors generate pseudo-random numbers using another random number engine as entropy source. They are generally used to alter the spectral characteristics of the underlying engine.
discard_block_engine
- Discards some output of a random number engine.
independent_bits_engine
- Packs the output of a random number engine into blocks of a specified number of bits.
shuffle_order_engine
- Delivers the output of a random number engine in a different order.
Seeds & Entropy Source
random_device
- Non-deterministic uniform random bit generator, although implementations are allowed to implement random_device using a pseudo-random number engine if there is no support for non-deterministic random number generation.
seed_seq
- General-purpose bias-eliminating scrambled seed sequence generator.
- User defined seed. maybe coming soon.
Distribution & Performance Test Suite
distribution_timer(func: staticmethod, *args, **kwargs) -> None
- For statistical analysis of non-deterministic functions.
- @param func :: Function method or lambda to analyze. func(*args, **kwargs)
- @optional_kw num_cycles :: Total number of samples for the distribution tests.
- @optional_kw post_processor :: Used to scale a large set of data into a smaller set of groupings.
quick_test(n=1000)
- Runs a battery of tests for each random distribution function and any associated base cases if applicable.
- @param n :: the total number of samples to collect for each test.
Development Log
RNG 0.1.17 beta
- Major Refactoring.
- New primary engine: Hurricane.
- Experimental engine Typhoon added: random_below() only.
RNG 0.1.16 beta
- Internal Engine Performance Tuning.
RNG 0.1.15 beta
- Engine Testing.
RNG 0.1.14 beta
- Fixed a few typos.
RNG 0.1.13 beta
- Fixed a few typos.
RNG 0.1.12 beta
- Major Test Suite Upgrade.
- Major Bug Fixes.
- Removed several 'foot-guns' in prep for fuzz testing in future releases.
RNG 0.1.11 beta
- Fixed small bug in the install script.
RNG 0.1.10 beta
- Fixed some typos.
RNG 0.1.9 beta
- Fixed some typos.
RNG 0.1.8 beta
- Fixed some typos.
- More documentation added.
RNG 0.1.7 beta
- The
random_floating_point
function renamed torandom_float
. - The function
c_rand()
has been removed as well as all the cruft it required. - Major Documentation Upgrade.
- Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
- Added this Dev Log.
RNG 0.0.6 alpha
- Minor ABI changes.
RNG 0.0.5 alpha
- Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
- Random Float Functions Implemented.
RNG 0.0.3 alpha
- Random Integer Functions Implemented.
RNG 0.0.2 alpha
- Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
- Planning & Design.
Distribution and Performance Test Suite
RNG Quick Test: Hurricane Engine
Min Integer: -9223372036854775807
Max Integer: 9223372036854775807
Min Float: -1.7976931348623157e+308
Max Float: 1.7976931348623157e+308
Min Below Zero: -5e-324
Min Above Zero: 5e-324
Binary Tests
Output Analysis: random_bool(truth_factor=0.3333333333333333)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 281ns
Raw Samples: False, True, False, False, False
Test Samples: 1000000
Sample Statistics:
Minimum: False
Median: 0.0
Maximum: True
Mean: 0.333513
Std Deviation: 0.47146823977156843
Sample Distribution:
False: 66.6487%
True: 33.3513%
Integer Tests
Base Case for random_int:
Output Analysis: Random.randint(a=1, b=6)
Approximate Single Execution Time: Min: 1187ns, Mid: 1250ns, Max: 3625ns
Raw Samples: 4, 4, 4, 2, 4
Test Samples: 1000000
Sample Statistics:
Minimum: 1
Median: 3.0
Maximum: 6
Mean: 3.499715
Std Deviation: 1.7073045521124326
Sample Distribution:
1: 16.6453%
2: 16.6847%
3: 16.706%
4: 16.6221%
5: 16.701%
6: 16.6409%
Output Analysis: random_int(left_limit=1, right_limit=6)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 156ns
Raw Samples: 1, 5, 4, 2, 6
Test Samples: 1000000
Sample Statistics:
Minimum: 1
Median: 3.0
Maximum: 6
Mean: 3.497492
Std Deviation: 1.7089407919570034
Sample Distribution:
1: 16.7291%
2: 16.698%
3: 16.6397%
4: 16.6276%
5: 16.639%
6: 16.6666%
Typhoon Engine:
Output Analysis: random_below(upper_bound=6)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 937ns
Raw Samples: 4, 0, 2, 2, 5
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 3.0
Maximum: 5
Mean: 2.501864
Std Deviation: 1.7074007850301114
Sample Distribution:
0: 16.6147%
1: 16.6673%
2: 16.6801%
3: 16.697%
4: 16.6366%
5: 16.7043%
Output Analysis: random_binomial(number_of_trials=4, probability=0.5)
Approximate Single Execution Time: Min: 187ns, Mid: 187ns, Max: 281ns
Raw Samples: 1, 2, 2, 4, 3
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 2.0
Maximum: 4
Mean: 2.000732
Std Deviation: 0.9995501304469242
Sample Distribution:
0: 6.2083%
1: 25.0387%
2: 37.4793%
3: 25.0189%
4: 6.2548%
Output Analysis: random_negative_binomial(number_of_trials=5, probability=0.75)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 218ns
Raw Samples: 1, 0, 0, 5, 1
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 1.0
Maximum: 17
Mean: 1.667842
Std Deviation: 1.491791301917694
Sample Distribution:
0: 23.6981%
1: 29.6548%
2: 22.303%
3: 12.9467%
4: 6.4832%
5: 2.9323%
6: 1.2263%
7: 0.4717%
8: 0.1807%
9: 0.0673%
10: 0.0239%
11: 0.0078%
12: 0.0022%
13: 0.0016%
14: 0.0002%
15: 0.0001%
17: 0.0001%
Output Analysis: random_geometric(probability=0.75)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 156ns
Raw Samples: 0, 0, 0, 0, 0
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 0.0
Maximum: 9
Mean: 0.333196
Std Deviation: 0.6670298872710806
Sample Distribution:
0: 75.0359%
1: 18.6944%
2: 4.7088%
3: 1.1648%
4: 0.3007%
5: 0.0698%
6: 0.0191%
7: 0.0053%
8: 0.0011%
9: 0.0001%
Output Analysis: random_poisson(mean=4.5)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 406ns
Raw Samples: 7, 4, 7, 6, 4
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 4.0
Maximum: 19
Mean: 4.50258
Std Deviation: 2.1232093282617828
Sample Distribution:
0: 1.1166%
1: 4.9826%
2: 11.2378%
3: 16.9127%
4: 18.9217%
5: 17.0505%
6: 12.8048%
7: 8.2521%
8: 4.6868%
9: 2.3388%
10: 1.0259%
11: 0.4297%
12: 0.1581%
13: 0.0556%
14: 0.0186%
15: 0.0051%
16: 0.0019%
17: 0.0004%
18: 0.0002%
19: 0.0001%
Output Analysis: random_discrete(count=7, xmin=1, xmax=30)
Approximate Single Execution Time: Min: 562ns, Mid: 593ns, Max: 937ns
Raw Samples: 6, 4, 5, 6, 3
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 4.0
Maximum: 6
Mean: 4.004473
Std Deviation: 1.7299554864264528
Sample Distribution:
0: 3.5324%
1: 7.1023%
2: 10.7147%
3: 14.2666%
4: 17.8702%
5: 21.4478%
6: 25.066%
Floating Point Tests
Base Case for generate_canonical:
Output Analysis: Random.random()
Approximate Single Execution Time: Min: 31ns, Mid: 46ns, Max: 62ns
Raw Samples: 0.6570047697196703, 0.15224885571692315, 0.3016126670295707, 0.27907194383835776, 0.7574862846673812
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 2.9815953883627344e-07
Median: 0.49949096543909177
Maximum: 0.9999995187658669
Mean: 0.4997294571076714
Std Deviation: 0.2887497663042492
Post-processor Distribution using round method:
0: 50.0497%
1: 49.9503%
Output Analysis: generate_canonical()
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 125ns
Raw Samples: 0.6970074952603725, 0.9119397436113943, 0.9346890033668273, 0.9217520201011971, 0.9566401834440911
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 3.0367002228985336e-06
Median: 0.4993868783055178
Maximum: 0.999999989509601
Mean: 0.49962081680742315
Std Deviation: 0.2886834892383035
Post-processor Distribution using round method:
0: 50.064%
1: 49.936%
Output Analysis: random_float(left_limit=0.0, right_limit=10.0)
Approximate Single Execution Time: Min: 62ns, Mid: 77ns, Max: 687ns
Raw Samples: 7.250072331699807, 2.19419532526034, 9.565847452510264, 2.0359165984956977, 4.82969972900843
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 4.615397130295251e-06
Median: 4.997286628857793
Maximum: 9.999993060485252
Mean: 4.998945688758831
Std Deviation: 2.888279348290616
Post-processor Distribution using ceil method:
1: 10.0294%
2: 9.9813%
3: 10.0128%
4: 10.01%
5: 9.9948%
6: 10.0037%
7: 9.9569%
8: 9.9782%
9: 10.0292%
10: 10.0037%
Base Case for random_exponential:
Output Analysis: Random.expovariate(lambd=1.0)
Approximate Single Execution Time: Min: 468ns, Mid: 468ns, Max: 812ns
Raw Samples: 1.1018688812063477, 0.6024554673121082, 1.6686416144822886, 0.9164516490715121, 0.15661897291107288
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 3.3318097247187586e-07
Median: 0.6933721837616083
Maximum: 14.549105438967956
Mean: 1.0001227529087031
Std Deviation: 1.0005268303436308
Post-processor Distribution using floor_mod_10 method:
0: 63.2201%
1: 23.2263%
2: 8.5896%
3: 3.126%
4: 1.1697%
5: 0.42%
6: 0.16%
7: 0.0581%
8: 0.0212%
9: 0.009%
Output Analysis: random_exponential(lambda_rate=1.0)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 625ns
Raw Samples: 0.07386087703511517, 0.5796138698566454, 0.4366800971494448, 2.5902206566536905, 0.5612743127963082
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.5956204111521102e-06
Median: 0.6928729297653928
Maximum: 13.085196366919934
Mean: 1.0000879939397769
Std Deviation: 0.9994077363036815
Post-processor Distribution using floor_mod_10 method:
0: 63.2424%
1: 23.2246%
2: 8.5672%
3: 3.1512%
4: 1.1513%
5: 0.4252%
6: 0.1501%
7: 0.0589%
8: 0.0217%
9: 0.0074%
Base Case for random_gamma:
Output Analysis: Random.gammavariate(alpha=1.0, beta=1.0)
Approximate Single Execution Time: Min: 656ns, Mid: 687ns, Max: 1125ns
Raw Samples: 0.31952797125019106, 2.9110574593309626, 1.507787243375767, 0.5079294444335829, 0.37442602347488985
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.5189774997716145e-08
Median: 0.6935264267270171
Maximum: 14.730821845424648
Mean: 0.9997367170432164
Std Deviation: 0.9987025439965271
Post-processor Distribution using floor_mod_10 method:
0: 63.1864%
1: 23.3231%
2: 8.5553%
3: 3.1248%
4: 1.1499%
5: 0.4176%
6: 0.1522%
7: 0.0586%
8: 0.0237%
9: 0.0084%
Output Analysis: random_gamma(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 218ns
Raw Samples: 1.659711871275316, 0.9281337345048667, 0.9640420158146191, 0.926760092156792, 1.6379990730513747
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 4.194584151559329e-07
Median: 0.6910225528579438
Maximum: 13.544102671589854
Mean: 0.9981751157717323
Std Deviation: 0.9979388234147085
Post-processor Distribution using floor_mod_10 method:
0: 63.2934%
1: 23.1918%
2: 8.5666%
3: 3.1235%
4: 1.1716%
5: 0.4164%
6: 0.1501%
7: 0.0602%
8: 0.0198%
9: 0.0066%
Output Analysis: random_weibull(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 718ns
Raw Samples: 0.4816125736713127, 1.37504844647496, 0.17476034816547142, 0.6737209810700767, 0.40694034561013837
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 7.293946316920661e-07
Median: 0.693660798796579
Maximum: 12.928130970544212
Mean: 1.0014375097409594
Std Deviation: 1.0034697986553105
Post-processor Distribution using floor_mod_10 method:
0: 63.1496%
1: 23.2699%
2: 8.5896%
3: 3.1477%
4: 1.1571%
5: 0.4314%
6: 0.1614%
7: 0.0612%
8: 0.0229%
9: 0.0092%
Output Analysis: random_extreme_value(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 218ns
Raw Samples: 8.755189280896964, 1.194033732536873, 1.2684866265139922, 1.3447492505523024, -0.4218304682806628
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -2.727102044096202
Median: 0.36527548204890337
Maximum: 15.845177261761595
Mean: 0.5759963198306385
Std Deviation: 1.2819436444760983
Post-processor Distribution using round method:
-3: 0.0008%
-2: 1.1423%
-1: 18.1057%
0: 35.3232%
1: 25.4256%
2: 12.1522%
3: 4.8859%
4: 1.8689%
5: 0.6831%
6: 0.2586%
7: 0.0984%
8: 0.0356%
9: 0.0119%
10: 0.005%
11: 0.0018%
12: 0.0007%
14: 0.0001%
16: 0.0002%
Base Case for random_normal:
Output Analysis: Random.gauss(mu=5.0, sigma=2.0)
Approximate Single Execution Time: Min: 718ns, Mid: 718ns, Max: 1187ns
Raw Samples: 6.300763276240546, 1.794491443283512, 5.198255642441661, 4.726653498300128, 5.518522425054493
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -5.298297695835354
Median: 5.000649683218311
Maximum: 14.056745918354773
Mean: 5.001638655916973
Std Deviation: 1.9991343569491313
Post-processor Distribution using round method:
-5: 0.0001%
-4: 0.0013%
-3: 0.0081%
-2: 0.0494%
-1: 0.2312%
0: 0.9296%
1: 2.7835%
2: 6.559%
3: 12.0424%
4: 17.4838%
5: 19.7402%
6: 17.4687%
7: 12.1565%
8: 6.5254%
9: 2.8079%
10: 0.9218%
11: 0.2346%
12: 0.0486%
13: 0.0069%
14: 0.001%
Output Analysis: random_normal(mean=5.0, std_dev=2.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 250ns
Raw Samples: 1.0323867658347494, 6.630004237421952, 2.8829346314043462, 7.518046479914521, 5.012168864358874
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -4.970879933162836
Median: 4.999800412668707
Maximum: 14.927920090816256
Mean: 4.999574230845622
Std Deviation: 1.9995376817999204
Post-processor Distribution using round method:
-5: 0.0001%
-4: 0.0009%
-3: 0.0078%
-2: 0.0486%
-1: 0.2497%
0: 0.931%
1: 2.7631%
2: 6.5322%
3: 12.154%
4: 17.4644%
5: 19.7271%
6: 17.4248%
7: 12.1475%
8: 6.5528%
9: 2.7816%
10: 0.9142%
11: 0.2457%
12: 0.0461%
13: 0.0074%
14: 0.0008%
15: 0.0002%
Base Case for random_log_normal:
Output Analysis: Random.lognormvariate(mu=1.6, sigma=0.25)
Approximate Single Execution Time: Min: 1000ns, Mid: 1093ns, Max: 1468ns
Raw Samples: 4.134952691559435, 4.411991171895773, 4.315384669101187, 5.025571391824962, 4.2588612031488315
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.2537749127366524
Median: 4.95223696948567
Maximum: 20.278351569884403
Mean: 5.109536606294799
Std Deviation: 1.299854786332313
Post-processor Distribution using round method:
1: 0.0001%
2: 0.3052%
3: 7.9529%
4: 26.8665%
5: 31.1629%
6: 19.8398%
7: 9.0017%
8: 3.3003%
9: 1.1084%
10: 0.3306%
11: 0.0939%
12: 0.0277%
13: 0.0075%
14: 0.0017%
15: 0.0005%
16: 0.0001%
18: 0.0001%
20: 0.0001%
Output Analysis: random_log_normal(log_mean=1.6, log_deviation=0.25)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 281ns
Raw Samples: 4.638566203068009, 6.488569436892637, 4.746135513863415, 9.043467938363431, 5.495642596245647
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.293629829698226
Median: 4.956065050948405
Maximum: 15.52340281958146
Mean: 5.112381442906878
Std Deviation: 1.2984785016330378
Post-processor Distribution using round method:
1: 0.0001%
2: 0.3069%
3: 7.8998%
4: 26.7776%
5: 31.2469%
6: 19.9085%
7: 9.0007%
8: 3.3119%
9: 1.0726%
10: 0.3384%
11: 0.0952%
12: 0.0305%
13: 0.0075%
14: 0.0023%
15: 0.001%
16: 0.0001%
Output Analysis: random_chi_squared(degrees_of_freedom=1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 281ns
Raw Samples: 1.8682538839390197, 0.1417458922993199, 0.35609409265427794, 0.10488140810614487, 0.0537827928584459
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 2.1198627145029897e-12
Median: 0.45560153411558757
Maximum: 21.441173685147888
Mean: 0.9999549710727771
Std Deviation: 1.4121520350785501
Post-processor Distribution using floor_mod_10 method:
0: 68.3143%
1: 16.0487%
2: 7.4482%
3: 3.8009%
4: 2.0053%
5: 1.1056%
6: 0.6216%
7: 0.3505%
8: 0.1957%
9: 0.1092%
Output Analysis: random_cauchy(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 250ns
Raw Samples: -0.5314701578336324, 0.09423819174982691, 0.0064472189131502475, -26.05628572449915, 0.83766832973519
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -792640.7171117909
Median: 0.0017499052419489148
Maximum: 467179.39816305996
Mean: -0.4710975417831596
Std Deviation: 1159.7291680368085
Post-processor Distribution using floor_mod_10 method:
0: 26.0603%
1: 11.3498%
2: 5.697%
3: 3.798%
4: 3.1417%
5: 3.1362%
6: 3.7826%
7: 5.7139%
8: 11.3031%
9: 26.0174%
Output Analysis: random_fisher_f(degrees_of_freedom_1=8.0, degrees_of_freedom_2=8.0)
Approximate Single Execution Time: Min: 218ns, Mid: 250ns, Max: 656ns
Raw Samples: 0.8213120498960351, 0.880247304396062, 0.9794153235132154, 0.6848216175255734, 0.6540665752635523
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 0.01697910105829946
Median: 1.0007647509684978
Maximum: 161.6347427592095
Mean: 1.335511566842662
Std Deviation: 1.26567995129718
Post-processor Distribution using floor_mod_10 method:
0: 50.0205%
1: 32.6974%
2: 10.3344%
3: 3.717%
4: 1.6027%
5: 0.7697%
6: 0.4078%
7: 0.2212%
8: 0.1402%
9: 0.0891%
Output Analysis: random_student_t(degrees_of_freedom=8.0)
Approximate Single Execution Time: Min: 156ns, Mid: 187ns, Max: 312ns
Raw Samples: 1.0636774816078634, -0.12042681077334667, -0.3233596860824123, 1.8924021728239548, 0.03240701144977185
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -11.347507412744367
Median: 0.0001797843119758288
Maximum: 15.741851962630925
Mean: 0.0006966434111483332
Std Deviation: 1.1528091788818284
Post-processor Distribution using round method:
-11: 0.0001%
-10: 0.0002%
-9: 0.0006%
-8: 0.0022%
-7: 0.0046%
-6: 0.0179%
-5: 0.0726%
-4: 0.3052%
-3: 1.44%
-2: 6.7055%
-1: 22.9215%
0: 37.0059%
1: 22.9333%
2: 6.7552%
3: 1.436%
4: 0.3012%
5: 0.0708%
6: 0.0187%
7: 0.0046%
8: 0.0022%
9: 0.0011%
10: 0.0003%
11: 0.0002%
16: 0.0001%
=========================================================================
Total Test Time: 92.9885 seconds
All tests passed!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file RNG-0.1.17.tar.gz
.
File metadata
- Download URL: RNG-0.1.17.tar.gz
- Upload date:
- Size: 109.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 714ff65319f9d397aebb43a535167b312dd88dd74130baab3af10368a0396a7d |
|
MD5 | 80708e5fd74935c9d5f57e12f18ba0b4 |
|
BLAKE2b-256 | 5e9439bdc65cf24e388a39351642f0c05ccc59bdd1f3355030cc4e13c70cca56 |
File details
Details for the file RNG-0.1.17-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: RNG-0.1.17-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 122.6 kB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aa378e2941a172e23ed16d4c9bb760545153cf0a5c62f02c9e170794d531034c |
|
MD5 | f3c1d69ea7c580f92570ff6a4b49de11 |
|
BLAKE2b-256 | 3b4140e7c078e44ca0d7a11d8cf1dde6315c3fbc375697f8c7021bb3b5c3fe8a |