Skip to main content

Random Number Generator: Complete API for the C++ Random library as a c-extension for Python3

Project description

RNG: Random Number Generator

RNG is not suitable for cryptography, but it could be perfect for other random stuff, data science, experimental programming, A.I. and games.

Recommended Installation: $ pip install RNG

Number Types & Sizes:

  • Float: Python float -> double at the C++ layer.
  • Integer: Python int -> long long at the C++ layer.
    • Input & Output Range: (-2**63, 2**63) or approximately +/- 9.2 billion billion.

Random Binary Function

  • random_bool(truth_factor: float) -> bool
    • Bernoulli distribution.
    • @param truth_factor :: the probability of True. Expected input range: [0.0, 1.0]
    • @return :: True or False

Random Integer Functions

  • random_int(left_limit: int, right_limit: int) -> int
    • Flat uniform distribution, distributed according to the discrete probability function.
    • Parameter order does not matter, that is to say, it is no longer required that lo <= hi, it just works.
    • @param left_limit :: input A.
    • @param right_limit :: input B.
    • @return :: random integer in the inclusive range [A, B]
  • random_below(upper_bound: int) -> int
    • Featuring The Typhoon Engine.
    • Flat uniform distribution.
    • @param upper_bound :: inout A
    • @return :: random integer in exclusive range [0, A) or (A, 0] if A < 0
  • random_binomial(number_of_trials: int, probability: float) -> int
    • Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
    • @param number_of_trials :: how many times to flip a coin.
    • @param probability :: how likely heads will be flipped. 0.5 is a fair coin. 1.0 is a double headed coin.
    • @return :: count of how many heads came up.
  • random_negative_binomial(trial_successes: int, probability: float) -> int
    • Based on the idea of flipping a coin as long as it takes to succeed.
    • @param trial_successes :: the required number of heads flipped to succeed.
    • @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
    • @return :: the count of how many tails came up before the required number of heads.
  • random_geometric(probability: float) -> int
    • Same as random_negative_binomial(1, probability).
  • random_poisson(mean: float) -> int
    • @param mean :: sets the average output of the function.
    • @return :: random integer, poisson distribution centered on the mean.
  • random_discrete(count: int, xmin: int, xmax: int) -> int
    • @param count :: number of weighted values
    • @param xmin :: smallest weight of the set
    • @param xmin :: largest weight of the set

Random Floating Point Functions

  • generate_canonical() -> float
    • Evenly distributes real values of maximum precision.
    • @return :: random Float in range {0.0, 1.0} biclusive. The spec defines the output range to be [0.0, 1.0).
      • biclusive: feature/bug rendering the exclusivity of this function a bit more mysterious than desired. This is a known compiler bug.
  • random_float(left_limit: float, right_limit: float) -> float
    • Suffers from the same biclusive feature/bug noted for generate_canonical().
    • @param left_limit :: input A
    • @param right_limit :: input B
    • @return :: random Float in range {A, B} biclusive. The spec defines the output range to be [A, B).
  • random_normal(mean: float, std_dev: float) -> float
    • @param mean :: sets the average output of the function.
    • @param std_dev :: standard deviation. Specifies spread of data from the mean.
  • random_log_normal(log_mean: float, log_deviation: float) -> float
    • @param log_mean :: sets the log of the mean of the function.
    • @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
  • random_exponential(lambda_rate: float) -> float
    • Produces random non-negative floating-point values, distributed according to probability density function.
    • @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
    • @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
  • random_gamma(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Produces random positive floating-point values, distributed according to probability density function.
    • @param shape :: α the number of independent exponentially distributed random variables.
    • @param scale :: β the scale factor or the mean of each of the distributed random variables.
    • @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
  • random_weibull(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Similar to the gamma distribution but uses a closed form distribution function.
    • Popular in reliability and survival analysis.
  • random_extreme_value(location: float, scale: float) -> float
    • Based on Extreme Value Theory.
    • Used for statistical models of the magnitude of earthquakes and volcanoes.
  • random_chi_squared(degrees_of_freedom: float) -> float
    • Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
  • random_cauchy(location: float, scale: float) -> float
    • @param location :: It specifies the location of the peak. The default value is 0.0.
    • @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
    • @return :: Continuous Distribution.
  • random_fisher_f(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
    • F distributions often arise when comparing ratios of variances.
  • random_student_t(degrees_of_freedom: float) -> float
    • T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
    • As degrees_of_freedom goes to infinity it converges with the normal distribution.
  • piecewise_constant_distribution coming soon
    • Produces real values distributed on constant subintervals.
  • piecewise_linear_distribution coming soon
    • Produces real values distributed on defined subintervals.

Engines

  • mersenne_twister_engine
    • Implements 64 bit Mersenne twister algorithm. Default engine on most systems.
  • linear_congruential_engine
    • Implements linear congruential algorithm.
  • subtract_with_carry_engine
    • Implements a subtract-with-carry (lagged Fibonacci) algorithm.

Engine Adaptors

Engine adaptors generate pseudo-random numbers using another random number engine as entropy source. They are generally used to alter the spectral characteristics of the underlying engine.

  • discard_block_engine
    • Discards some output of a random number engine.
  • independent_bits_engine
    • Packs the output of a random number engine into blocks of a specified number of bits.
  • shuffle_order_engine
    • Delivers the output of a random number engine in a different order.

Seeds & Entropy Source

  • random_device
    • Non-deterministic uniform random bit generator, although implementations are allowed to implement random_device using a pseudo-random number engine if there is no support for non-deterministic random number generation.
  • seed_seq
    • General-purpose bias-eliminating scrambled seed sequence generator.
  • User defined seed. maybe coming soon.

Distribution & Performance Test Suite

  • distribution_timer(func: staticmethod, *args, **kwargs) -> None
    • For statistical analysis of non-deterministic functions.
    • @param func :: Function method or lambda to analyze. func(*args, **kwargs)
    • @optional_kw num_cycles :: Total number of samples for the distribution tests.
    • @optional_kw post_processor :: Used to scale a large set of data into a smaller set of groupings.
  • quick_test(n=10000)
    • Runs a battery of tests for each random distribution function.
    • @param n :: the total number of samples to collect for each test. Default: 10,000

Development Log

RNG 0.1.20 beta
  • Changed default inputs for random_int and random_below to sane values.
    • random_int(left_limit=1, right_limit=20) down from -2**63, 2**63 - 1
    • random_below(upper_bound=10) down from 2**63 - 1
RNG 0.1.19 beta
  • Broke some fixed typos, for a change of pace.
RNG 0.1.18 beta
  • Fixed some typos.
RNG 0.1.17 beta
  • Major Refactoring.
  • New primary engine: Hurricane.
  • Experimental engine Typhoon added: random_below() only.
RNG 0.1.16 beta
  • Internal Engine Performance Tuning.
RNG 0.1.15 beta
  • Engine Testing.
RNG 0.1.14 beta
  • Fixed a few typos.
RNG 0.1.13 beta
  • Fixed a few typos.
RNG 0.1.12 beta
  • Major Test Suite Upgrade.
  • Major Bug Fixes.
    • Removed several 'foot-guns' in prep for fuzz testing in future releases.
RNG 0.1.11 beta
  • Fixed small bug in the install script.
RNG 0.1.10 beta
  • Fixed some typos.
RNG 0.1.9 beta
  • Fixed some typos.
RNG 0.1.8 beta
  • Fixed some typos.
  • More documentation added.
RNG 0.1.7 beta
  • The random_floating_point function renamed to random_float.
  • The function c_rand() has been removed as well as all the cruft it required.
  • Major Documentation Upgrade.
  • Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
  • Added this Dev Log.
RNG 0.0.6 alpha
  • Minor ABI changes.
RNG 0.0.5 alpha
  • Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
  • Random Float Functions Implemented.
RNG 0.0.3 alpha
  • Random Integer Functions Implemented.
RNG 0.0.2 alpha
  • Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
  • Planning & Design.

Distribution and Performance Test Suite

RNG Quick Test: Hurricane Engine
 Min Integer: -9223372036854775807
 Max Integer:  9223372036854775807
 Min Float: -1.7976931348623157e+308
 Max Float:  1.7976931348623157e+308
 Min Below Zero: -5e-324
 Min Above Zero:  5e-324


Binary Tests

Output Analysis: random_bool(truth_factor=0.3333333333333333)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 281ns
Raw Samples: False, True, False, False, False
Test Samples: 1000000
Sample Statistics:
 Minimum: False
 Median: 0.0
 Maximum: True
 Mean: 0.333513
 Std Deviation: 0.47146823977156843
Sample Distribution:
 False: 66.6487%
 True: 33.3513%


Integer Tests

Base Case for random_int:
Output Analysis: Random.randint(a=1, b=6)
Approximate Single Execution Time: Min: 1187ns, Mid: 1250ns, Max: 3625ns
Raw Samples: 4, 4, 4, 2, 4
Test Samples: 1000000
Sample Statistics:
 Minimum: 1
 Median: 3.0
 Maximum: 6
 Mean: 3.499715
 Std Deviation: 1.7073045521124326
Sample Distribution:
 1: 16.6453%
 2: 16.6847%
 3: 16.706%
 4: 16.6221%
 5: 16.701%
 6: 16.6409%

Output Analysis: random_int(left_limit=1, right_limit=6)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 156ns
Raw Samples: 1, 5, 4, 2, 6
Test Samples: 1000000
Sample Statistics:
 Minimum: 1
 Median: 3.0
 Maximum: 6
 Mean: 3.497492
 Std Deviation: 1.7089407919570034
Sample Distribution:
 1: 16.7291%
 2: 16.698%
 3: 16.6397%
 4: 16.6276%
 5: 16.639%
 6: 16.6666%

Typhoon Engine:
Output Analysis: random_below(upper_bound=6)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 937ns
Raw Samples: 4, 0, 2, 2, 5
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 3.0
 Maximum: 5
 Mean: 2.501864
 Std Deviation: 1.7074007850301114
Sample Distribution:
 0: 16.6147%
 1: 16.6673%
 2: 16.6801%
 3: 16.697%
 4: 16.6366%
 5: 16.7043%

Output Analysis: random_binomial(number_of_trials=4, probability=0.5)
Approximate Single Execution Time: Min: 187ns, Mid: 187ns, Max: 281ns
Raw Samples: 1, 2, 2, 4, 3
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 2.0
 Maximum: 4
 Mean: 2.000732
 Std Deviation: 0.9995501304469242
Sample Distribution:
 0: 6.2083%
 1: 25.0387%
 2: 37.4793%
 3: 25.0189%
 4: 6.2548%

Output Analysis: random_negative_binomial(number_of_trials=5, probability=0.75)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 218ns
Raw Samples: 1, 0, 0, 5, 1
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 1.0
 Maximum: 17
 Mean: 1.667842
 Std Deviation: 1.491791301917694
Sample Distribution:
 0: 23.6981%
 1: 29.6548%
 2: 22.303%
 3: 12.9467%
 4: 6.4832%
 5: 2.9323%
 6: 1.2263%
 7: 0.4717%
 8: 0.1807%
 9: 0.0673%
 10: 0.0239%
 11: 0.0078%
 12: 0.0022%
 13: 0.0016%
 14: 0.0002%
 15: 0.0001%
 17: 0.0001%

Output Analysis: random_geometric(probability=0.75)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 156ns
Raw Samples: 0, 0, 0, 0, 0
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 0.0
 Maximum: 9
 Mean: 0.333196
 Std Deviation: 0.6670298872710806
Sample Distribution:
 0: 75.0359%
 1: 18.6944%
 2: 4.7088%
 3: 1.1648%
 4: 0.3007%
 5: 0.0698%
 6: 0.0191%
 7: 0.0053%
 8: 0.0011%
 9: 0.0001%

Output Analysis: random_poisson(mean=4.5)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 406ns
Raw Samples: 7, 4, 7, 6, 4
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 4.0
 Maximum: 19
 Mean: 4.50258
 Std Deviation: 2.1232093282617828
Sample Distribution:
 0: 1.1166%
 1: 4.9826%
 2: 11.2378%
 3: 16.9127%
 4: 18.9217%
 5: 17.0505%
 6: 12.8048%
 7: 8.2521%
 8: 4.6868%
 9: 2.3388%
 10: 1.0259%
 11: 0.4297%
 12: 0.1581%
 13: 0.0556%
 14: 0.0186%
 15: 0.0051%
 16: 0.0019%
 17: 0.0004%
 18: 0.0002%
 19: 0.0001%

Output Analysis: random_discrete(count=7, xmin=1, xmax=30)
Approximate Single Execution Time: Min: 562ns, Mid: 593ns, Max: 937ns
Raw Samples: 6, 4, 5, 6, 3
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 4.0
 Maximum: 6
 Mean: 4.004473
 Std Deviation: 1.7299554864264528
Sample Distribution:
 0: 3.5324%
 1: 7.1023%
 2: 10.7147%
 3: 14.2666%
 4: 17.8702%
 5: 21.4478%
 6: 25.066%


Floating Point Tests

Base Case for generate_canonical:
Output Analysis: Random.random()
Approximate Single Execution Time: Min: 31ns, Mid: 46ns, Max: 62ns
Raw Samples: 0.6570047697196703, 0.15224885571692315, 0.3016126670295707, 0.27907194383835776, 0.7574862846673812
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 2.9815953883627344e-07
 Median: 0.49949096543909177
 Maximum: 0.9999995187658669
 Mean: 0.4997294571076714
 Std Deviation: 0.2887497663042492
Post-processor Distribution using round method:
 0: 50.0497%
 1: 49.9503%

Output Analysis: generate_canonical()
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 125ns
Raw Samples: 0.6970074952603725, 0.9119397436113943, 0.9346890033668273, 0.9217520201011971, 0.9566401834440911
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 3.0367002228985336e-06
 Median: 0.4993868783055178
 Maximum: 0.999999989509601
 Mean: 0.49962081680742315
 Std Deviation: 0.2886834892383035
Post-processor Distribution using round method:
 0: 50.064%
 1: 49.936%

Output Analysis: random_float(left_limit=0.0, right_limit=10.0)
Approximate Single Execution Time: Min: 62ns, Mid: 77ns, Max: 687ns
Raw Samples: 7.250072331699807, 2.19419532526034, 9.565847452510264, 2.0359165984956977, 4.82969972900843
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 4.615397130295251e-06
 Median: 4.997286628857793
 Maximum: 9.999993060485252
 Mean: 4.998945688758831
 Std Deviation: 2.888279348290616
Post-processor Distribution using ceil method:
 1: 10.0294%
 2: 9.9813%
 3: 10.0128%
 4: 10.01%
 5: 9.9948%
 6: 10.0037%
 7: 9.9569%
 8: 9.9782%
 9: 10.0292%
 10: 10.0037%

Base Case for random_exponential:
Output Analysis: Random.expovariate(lambd=1.0)
Approximate Single Execution Time: Min: 468ns, Mid: 468ns, Max: 812ns
Raw Samples: 1.1018688812063477, 0.6024554673121082, 1.6686416144822886, 0.9164516490715121, 0.15661897291107288
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 3.3318097247187586e-07
 Median: 0.6933721837616083
 Maximum: 14.549105438967956
 Mean: 1.0001227529087031
 Std Deviation: 1.0005268303436308
Post-processor Distribution using floor_mod_10 method:
 0: 63.2201%
 1: 23.2263%
 2: 8.5896%
 3: 3.126%
 4: 1.1697%
 5: 0.42%
 6: 0.16%
 7: 0.0581%
 8: 0.0212%
 9: 0.009%

Output Analysis: random_exponential(lambda_rate=1.0)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 625ns
Raw Samples: 0.07386087703511517, 0.5796138698566454, 0.4366800971494448, 2.5902206566536905, 0.5612743127963082
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 1.5956204111521102e-06
 Median: 0.6928729297653928
 Maximum: 13.085196366919934
 Mean: 1.0000879939397769
 Std Deviation: 0.9994077363036815
Post-processor Distribution using floor_mod_10 method:
 0: 63.2424%
 1: 23.2246%
 2: 8.5672%
 3: 3.1512%
 4: 1.1513%
 5: 0.4252%
 6: 0.1501%
 7: 0.0589%
 8: 0.0217%
 9: 0.0074%

Base Case for random_gamma:
Output Analysis: Random.gammavariate(alpha=1.0, beta=1.0)
Approximate Single Execution Time: Min: 656ns, Mid: 687ns, Max: 1125ns
Raw Samples: 0.31952797125019106, 2.9110574593309626, 1.507787243375767, 0.5079294444335829, 0.37442602347488985
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 1.5189774997716145e-08
 Median: 0.6935264267270171
 Maximum: 14.730821845424648
 Mean: 0.9997367170432164
 Std Deviation: 0.9987025439965271
Post-processor Distribution using floor_mod_10 method:
 0: 63.1864%
 1: 23.3231%
 2: 8.5553%
 3: 3.1248%
 4: 1.1499%
 5: 0.4176%
 6: 0.1522%
 7: 0.0586%
 8: 0.0237%
 9: 0.0084%

Output Analysis: random_gamma(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 218ns
Raw Samples: 1.659711871275316, 0.9281337345048667, 0.9640420158146191, 0.926760092156792, 1.6379990730513747
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 4.194584151559329e-07
 Median: 0.6910225528579438
 Maximum: 13.544102671589854
 Mean: 0.9981751157717323
 Std Deviation: 0.9979388234147085
Post-processor Distribution using floor_mod_10 method:
 0: 63.2934%
 1: 23.1918%
 2: 8.5666%
 3: 3.1235%
 4: 1.1716%
 5: 0.4164%
 6: 0.1501%
 7: 0.0602%
 8: 0.0198%
 9: 0.0066%

Output Analysis: random_weibull(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 718ns
Raw Samples: 0.4816125736713127, 1.37504844647496, 0.17476034816547142, 0.6737209810700767, 0.40694034561013837
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 7.293946316920661e-07
 Median: 0.693660798796579
 Maximum: 12.928130970544212
 Mean: 1.0014375097409594
 Std Deviation: 1.0034697986553105
Post-processor Distribution using floor_mod_10 method:
 0: 63.1496%
 1: 23.2699%
 2: 8.5896%
 3: 3.1477%
 4: 1.1571%
 5: 0.4314%
 6: 0.1614%
 7: 0.0612%
 8: 0.0229%
 9: 0.0092%

Output Analysis: random_extreme_value(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 218ns
Raw Samples: 8.755189280896964, 1.194033732536873, 1.2684866265139922, 1.3447492505523024, -0.4218304682806628
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: -2.727102044096202
 Median: 0.36527548204890337
 Maximum: 15.845177261761595
 Mean: 0.5759963198306385
 Std Deviation: 1.2819436444760983
Post-processor Distribution using round method:
 -3: 0.0008%
 -2: 1.1423%
 -1: 18.1057%
 0: 35.3232%
 1: 25.4256%
 2: 12.1522%
 3: 4.8859%
 4: 1.8689%
 5: 0.6831%
 6: 0.2586%
 7: 0.0984%
 8: 0.0356%
 9: 0.0119%
 10: 0.005%
 11: 0.0018%
 12: 0.0007%
 14: 0.0001%
 16: 0.0002%

Base Case for random_normal:
Output Analysis: Random.gauss(mu=5.0, sigma=2.0)
Approximate Single Execution Time: Min: 718ns, Mid: 718ns, Max: 1187ns
Raw Samples: 6.300763276240546, 1.794491443283512, 5.198255642441661, 4.726653498300128, 5.518522425054493
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: -5.298297695835354
 Median: 5.000649683218311
 Maximum: 14.056745918354773
 Mean: 5.001638655916973
 Std Deviation: 1.9991343569491313
Post-processor Distribution using round method:
 -5: 0.0001%
 -4: 0.0013%
 -3: 0.0081%
 -2: 0.0494%
 -1: 0.2312%
 0: 0.9296%
 1: 2.7835%
 2: 6.559%
 3: 12.0424%
 4: 17.4838%
 5: 19.7402%
 6: 17.4687%
 7: 12.1565%
 8: 6.5254%
 9: 2.8079%
 10: 0.9218%
 11: 0.2346%
 12: 0.0486%
 13: 0.0069%
 14: 0.001%

Output Analysis: random_normal(mean=5.0, std_dev=2.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 250ns
Raw Samples: 1.0323867658347494, 6.630004237421952, 2.8829346314043462, 7.518046479914521, 5.012168864358874
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: -4.970879933162836
 Median: 4.999800412668707
 Maximum: 14.927920090816256
 Mean: 4.999574230845622
 Std Deviation: 1.9995376817999204
Post-processor Distribution using round method:
 -5: 0.0001%
 -4: 0.0009%
 -3: 0.0078%
 -2: 0.0486%
 -1: 0.2497%
 0: 0.931%
 1: 2.7631%
 2: 6.5322%
 3: 12.154%
 4: 17.4644%
 5: 19.7271%
 6: 17.4248%
 7: 12.1475%
 8: 6.5528%
 9: 2.7816%
 10: 0.9142%
 11: 0.2457%
 12: 0.0461%
 13: 0.0074%
 14: 0.0008%
 15: 0.0002%

Base Case for random_log_normal:
Output Analysis: Random.lognormvariate(mu=1.6, sigma=0.25)
Approximate Single Execution Time: Min: 1000ns, Mid: 1093ns, Max: 1468ns
Raw Samples: 4.134952691559435, 4.411991171895773, 4.315384669101187, 5.025571391824962, 4.2588612031488315
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 1.2537749127366524
 Median: 4.95223696948567
 Maximum: 20.278351569884403
 Mean: 5.109536606294799
 Std Deviation: 1.299854786332313
Post-processor Distribution using round method:
 1: 0.0001%
 2: 0.3052%
 3: 7.9529%
 4: 26.8665%
 5: 31.1629%
 6: 19.8398%
 7: 9.0017%
 8: 3.3003%
 9: 1.1084%
 10: 0.3306%
 11: 0.0939%
 12: 0.0277%
 13: 0.0075%
 14: 0.0017%
 15: 0.0005%
 16: 0.0001%
 18: 0.0001%
 20: 0.0001%

Output Analysis: random_log_normal(log_mean=1.6, log_deviation=0.25)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 281ns
Raw Samples: 4.638566203068009, 6.488569436892637, 4.746135513863415, 9.043467938363431, 5.495642596245647
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 1.293629829698226
 Median: 4.956065050948405
 Maximum: 15.52340281958146
 Mean: 5.112381442906878
 Std Deviation: 1.2984785016330378
Post-processor Distribution using round method:
 1: 0.0001%
 2: 0.3069%
 3: 7.8998%
 4: 26.7776%
 5: 31.2469%
 6: 19.9085%
 7: 9.0007%
 8: 3.3119%
 9: 1.0726%
 10: 0.3384%
 11: 0.0952%
 12: 0.0305%
 13: 0.0075%
 14: 0.0023%
 15: 0.001%
 16: 0.0001%

Output Analysis: random_chi_squared(degrees_of_freedom=1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 281ns
Raw Samples: 1.8682538839390197, 0.1417458922993199, 0.35609409265427794, 0.10488140810614487, 0.0537827928584459
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 2.1198627145029897e-12
 Median: 0.45560153411558757
 Maximum: 21.441173685147888
 Mean: 0.9999549710727771
 Std Deviation: 1.4121520350785501
Post-processor Distribution using floor_mod_10 method:
 0: 68.3143%
 1: 16.0487%
 2: 7.4482%
 3: 3.8009%
 4: 2.0053%
 5: 1.1056%
 6: 0.6216%
 7: 0.3505%
 8: 0.1957%
 9: 0.1092%

Output Analysis: random_cauchy(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 250ns
Raw Samples: -0.5314701578336324, 0.09423819174982691, 0.0064472189131502475, -26.05628572449915, 0.83766832973519
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: -792640.7171117909
 Median: 0.0017499052419489148
 Maximum: 467179.39816305996
 Mean: -0.4710975417831596
 Std Deviation: 1159.7291680368085
Post-processor Distribution using floor_mod_10 method:
 0: 26.0603%
 1: 11.3498%
 2: 5.697%
 3: 3.798%
 4: 3.1417%
 5: 3.1362%
 6: 3.7826%
 7: 5.7139%
 8: 11.3031%
 9: 26.0174%

Output Analysis: random_fisher_f(degrees_of_freedom_1=8.0, degrees_of_freedom_2=8.0)
Approximate Single Execution Time: Min: 218ns, Mid: 250ns, Max: 656ns
Raw Samples: 0.8213120498960351, 0.880247304396062, 0.9794153235132154, 0.6848216175255734, 0.6540665752635523
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 0.01697910105829946
 Median: 1.0007647509684978
 Maximum: 161.6347427592095
 Mean: 1.335511566842662
 Std Deviation: 1.26567995129718
Post-processor Distribution using floor_mod_10 method:
 0: 50.0205%
 1: 32.6974%
 2: 10.3344%
 3: 3.717%
 4: 1.6027%
 5: 0.7697%
 6: 0.4078%
 7: 0.2212%
 8: 0.1402%
 9: 0.0891%

Output Analysis: random_student_t(degrees_of_freedom=8.0)
Approximate Single Execution Time: Min: 156ns, Mid: 187ns, Max: 312ns
Raw Samples: 1.0636774816078634, -0.12042681077334667, -0.3233596860824123, 1.8924021728239548, 0.03240701144977185
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: -11.347507412744367
 Median: 0.0001797843119758288
 Maximum: 15.741851962630925
 Mean: 0.0006966434111483332
 Std Deviation: 1.1528091788818284
Post-processor Distribution using round method:
 -11: 0.0001%
 -10: 0.0002%
 -9: 0.0006%
 -8: 0.0022%
 -7: 0.0046%
 -6: 0.0179%
 -5: 0.0726%
 -4: 0.3052%
 -3: 1.44%
 -2: 6.7055%
 -1: 22.9215%
 0: 37.0059%
 1: 22.9333%
 2: 6.7552%
 3: 1.436%
 4: 0.3012%
 5: 0.0708%
 6: 0.0187%
 7: 0.0046%
 8: 0.0022%
 9: 0.0011%
 10: 0.0003%
 11: 0.0002%
 16: 0.0001%


=========================================================================
Total Test Time: 92.9885 seconds


All tests passed!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RNG-0.1.20.tar.gz (108.9 kB view details)

Uploaded Source

Built Distribution

RNG-0.1.20-cp37-cp37m-macosx_10_9_x86_64.whl (122.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file RNG-0.1.20.tar.gz.

File metadata

  • Download URL: RNG-0.1.20.tar.gz
  • Upload date:
  • Size: 108.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2

File hashes

Hashes for RNG-0.1.20.tar.gz
Algorithm Hash digest
SHA256 c24950d8ce06eefd432b8172f45d580a2a380eca9a7431e1cb034c3d0a22042e
MD5 581d977dad4760ca8ce55397f9c19b28
BLAKE2b-256 e00c88eb03be261cabc57f50403317ee116f26758f3b05179213b3ecbf915a14

See more details on using hashes here.

File details

Details for the file RNG-0.1.20-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: RNG-0.1.20-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 122.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2

File hashes

Hashes for RNG-0.1.20-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cdeae5287f903d257c843b4c79f98d06d5226e3d8299eddfe521b68496022e71
MD5 64168b6c2dd5a28a41badf64af09f2bd
BLAKE2b-256 fb93c401d3998c96c518ed2db04aa0ebad9969f7f93e4478026b39daff4bdf42

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page