Skip to main content

Python API for the C++ Random library

Project description

Random Number Generator: RNG Storm Engine

RNG is not suitable for cryptography, but it could be perfect for other random stuff, data science, experimental programming, A.I. and games.

Recommended Installation: $ pip install RNG

Number Types, Precision & Size:

  • Float: Python float -> double at the C++ layer.

    • Min Float: -1.7976931348623157e+308
    • Max Float: 1.7976931348623157e+308
    • Min Below Zero: -5e-324
    • Min Above Zero: 5e-324
  • Integer: Python int -> long long at the C++ layer.

    • Input & Output Range: (-2**63, 2**63) or approximately +/- 9.2 billion billion.
    • Min Integer: -9223372036854775807
    • Max Integer: 9223372036854775807

Random Binary Function

  • bernoulli(ratio_of_truth: float) -> bool
    • Bernoulli distribution.
    • @param ratio_of_truth :: the probability of True as a decimal. Expected input range: [0.0, 1.0], clamped.
    • @return :: True or False

Random Integer Functions

  • randint(left_limit: int, right_limit: int) -> int
    • Flat uniform distribution.
    • 20x faster than random.randint()
    • @param left_limit :: input A.
    • @param right_limit :: input B.
    • @return :: random integer in the inclusive range [A, B] or [B, A] if B < A
  • randbelow(upper_bound: int) -> int
    • Flat uniform distribution.
    • @param upper_bound :: inout A
    • @return :: random integer in exclusive range [0, A) or (A, 0] if A < 0
  • binomial(number_of_trials: int, probability: float) -> int
    • Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
    • @param number_of_trials :: how many times to flip a coin.
    • @param probability :: how likely heads will be flipped. 0.5 is a fair coin. 1.0 is a double headed coin.
    • @return :: count of how many heads came up.
  • negative_binomial(trial_successes: int, probability: float) -> int
    • Based on the idea of flipping a coin as long as it takes to succeed.
    • @param trial_successes :: the required number of heads flipped to succeed.
    • @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
    • @return :: the count of how many tails came up before the required number of heads.
  • geometric(probability: float) -> int
    • Same as random_negative_binomial(1, probability).
  • poisson(mean: float) -> int
    • @param mean :: sets the average output of the function.
    • @return :: random integer, poisson distribution centered on the mean.

Random Floating Point Functions

  • random() -> float
    • Evenly distributes real values of maximum precision.
    • @return :: random Float in range {0.0, 1.0} biclusive. The spec defines the output range to be [0.0, 1.0).
      • biclusive: feature/bug rendering the exclusivity of this function a bit more mysterious than desired. This is a known compiler bug.
  • uniform(left_limit: float, right_limit: float) -> float
    • Suffers from the same biclusive feature/bug noted for generate_canonical().
    • @param left_limit :: input A
    • @param right_limit :: input B
    • @return :: random Float in range {A, B} biclusive. The spec defines the output range to be [A, B).
  • normalvariate(mean: float, std_dev: float) -> float
    • @param mean :: sets the average output of the function.
    • @param std_dev :: standard deviation. Specifies spread of data from the mean.
  • lognormvariate(log_mean: float, log_deviation: float) -> float
    • @param log_mean :: sets the log of the mean of the function.
    • @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
  • exponential(lambda_rate: float) -> float
    • Produces random non-negative floating-point values, distributed according to probability density function.
    • @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
    • @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
  • gammavariate(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Produces random positive floating-point values, distributed according to probability density function.
    • @param shape :: α the number of independent exponentially distributed random variables.
    • @param scale :: β the scale factor or the mean of each of the distributed random variables.
    • @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
  • weibullvariate(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Similar to the gamma distribution but uses a closed form distribution function.
    • Popular in reliability and survival analysis.
  • extreme_value(location: float, scale: float) -> float
    • Based on Extreme Value Theory.
    • Used for statistical models of the magnitude of earthquakes and volcanoes.
  • chi_squared(degrees_of_freedom: float) -> float
    • Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
  • cauchy(location: float, scale: float) -> float
    • @param location :: It specifies the location of the peak. The default value is 0.0.
    • @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
    • @return :: Continuous Distribution.
  • fisher_f(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
    • F distributions often arise when comparing ratios of variances.
  • student_t(degrees_of_freedom: float) -> float
    • T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
    • As degrees_of_freedom goes to infinity it converges with the normal distribution.

Engines

  • mersenne_twister_engine
    • Implements 64 bit Mersenne twister algorithm. Default engine on most systems.
  • linear_congruential_engine
    • Implements linear congruential algorithm.
  • subtract_with_carry_engine
    • Implements a subtract-with-carry (lagged Fibonacci) algorithm.
  • storm_engine
    • RNG: Custom Engine
    • Default Standard

Engine Adaptors

Engine adaptors generate pseudo-random numbers using another random number engine as entropy source. They are generally used to alter the spectral characteristics of the underlying engine.

  • discard_block_engine
    • Discards some output of a random number engine.
  • independent_bits_engine
    • Packs the output of a random number engine into blocks of a specified number of bits.
  • shuffle_order_engine
    • Delivers the output of a random number engine in a different order.

Seeds & Entropy Source

  • random_device
    • Non-deterministic uniform random bit generator, although implementations are allowed to implement random_device using a pseudo-random number engine if there is no support for non-deterministic random number generation.
  • seed_seq
    • General-purpose bias-eliminating scrambled seed sequence generator.

Distribution & Performance Test Suite

  • distribution_timer(func: staticmethod, *args, **kwargs) -> None
    • For statistical analysis of non-deterministic numeric functions.
    • @param func :: Function method or lambda to analyze. func(*args, **kwargs)
    • @optional_kw num_cycles :: Total number of samples for distribution analysis.
    • @optional_kw post_processor :: Used to scale a large set of data into a smaller set of groupings.
  • quick_test(n=10000)
    • Runs a battery of tests for every random distribution function in the module.
    • @param n :: the total number of samples to collect for each test. Default: 10,000

Development Log

RNG 0.2.2
  • discrete() removed.
RNG 0.2.1
  • minor typos
  • discrete() depreciated.
RNG 0.2.0
  • Major Rebuild.
RNG 0.1.22
  • The RNG Storm Engine is now the default standard.
  • Experimental Vortex Engine added for testing.
RNG 0.1.21 beta
  • Small update to the testing suite.
RNG 0.1.20 beta
  • Changed default inputs for random_int and random_below to sane values.
    • random_int(left_limit=1, right_limit=20) down from -2**63, 2**63 - 1
    • random_below(upper_bound=10) down from 2**63 - 1
RNG 0.1.19 beta
  • Broke some fixed typos, for a change of pace.
RNG 0.1.18 beta
  • Fixed some typos.
RNG 0.1.17 beta
  • Major Refactoring.
  • New primary engine: Hurricane.
  • Experimental engine Typhoon added: random_below() only.
RNG 0.1.16 beta
  • Internal Engine Performance Tuning.
RNG 0.1.15 beta
  • Engine Testing.
RNG 0.1.14 beta
  • Fixed a few typos.
RNG 0.1.13 beta
  • Fixed a few typos.
RNG 0.1.12 beta
  • Major Test Suite Upgrade.
  • Major Bug Fixes.
    • Removed several 'foot-guns' in prep for fuzz testing in future releases.
RNG 0.1.11 beta
  • Fixed small bug in the install script.
RNG 0.1.10 beta
  • Fixed some typos.
RNG 0.1.9 beta
  • Fixed some typos.
RNG 0.1.8 beta
  • Fixed some typos.
  • More documentation added.
RNG 0.1.7 beta
  • The random_floating_point function renamed to random_float.
  • The function c_rand() has been removed as well as all the cruft it required.
  • Major Documentation Upgrade.
  • Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
  • Added this Dev Log.
RNG 0.0.6 alpha
  • Minor ABI changes.
RNG 0.0.5 alpha
  • Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
  • Random Float Functions Implemented.
RNG 0.0.3 alpha
  • Random Integer Functions Implemented.
RNG 0.0.2 alpha
  • Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
  • Planning & Design.

Distribution and Performance Test Suite

Quick Test: RNG Storm Engine
 Min Integer: -9223372036854775807
 Max Integer:  9223372036854775807
 Min Float: -1.7976931348623157e+308
 Max Float:  1.7976931348623157e+308
 Min Below Zero: -5e-324
 Min Above Zero:  5e-324


Binary Tests

Output Distribution: bernoulli(0.3333333333333333)
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 125ns
Raw Samples: True, False, False, True, True
Test Samples: 10000
Sample Statistics:
 Minimum: False
 Median: False
 Maximum: True
 Mean: 0.3298
 Std Deviation: 0.4701638708009588
Sample Distribution:
 False: 67.02%
 True: 32.98%


Integer Tests

Output Distribution: Random.randint(1, 6)
Approximate Single Execution Time: Min: 1406ns, Mid: 1609ns, Max: 2250ns
Raw Samples: 6, 5, 3, 5, 1
Test Samples: 10000
Sample Statistics:
 Minimum: 1
 Median: 3
 Maximum: 6
 Mean: 3.482
 Std Deviation: 1.7009307206737296
Sample Distribution:
 1: 16.9%
 2: 16.39%
 3: 17.19%
 4: 16.85%
 5: 16.47%
 6: 16.2%

Output Distribution: randint(1, 6)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 93ns
Raw Samples: 1, 2, 1, 4, 5
Test Samples: 10000
Sample Statistics:
 Minimum: 1
 Median: 4
 Maximum: 6
 Mean: 3.5006
 Std Deviation: 1.7051364722622362
Sample Distribution:
 1: 16.7%
 2: 16.47%
 3: 16.65%
 4: 16.97%
 5: 16.67%
 6: 16.54%

Output Distribution: Random.randrange(6)
Approximate Single Execution Time: Min: 812ns, Mid: 843ns, Max: 1062ns
Raw Samples: 1, 3, 4, 5, 4
Test Samples: 10000
Sample Statistics:
 Minimum: 0
 Median: 2
 Maximum: 5
 Mean: 2.4764
 Std Deviation: 1.7017439975693542
Sample Distribution:
 0: 16.59%
 1: 17.29%
 2: 16.78%
 3: 17.05%
 4: 15.81%
 5: 16.48%

Output Distribution: randbelow(6)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 250ns
Raw Samples: 3, 5, 1, 1, 3
Test Samples: 10000
Sample Statistics:
 Minimum: 0
 Median: 3
 Maximum: 5
 Mean: 2.5202
 Std Deviation: 1.7011999788786778
Sample Distribution:
 0: 16.23%
 1: 16.24%
 2: 17.09%
 3: 17.16%
 4: 16.28%
 5: 17.0%

Output Distribution: binomial(4, 0.5)
Approximate Single Execution Time: Min: 156ns, Mid: 156ns, Max: 375ns
Raw Samples: 3, 3, 2, 1, 2
Test Samples: 10000
Sample Statistics:
 Minimum: 0
 Median: 2
 Maximum: 4
 Mean: 2.013
 Std Deviation: 1.0004654382382787
Sample Distribution:
 0: 6.06%
 1: 24.77%
 2: 37.43%
 3: 25.29%
 4: 6.45%

Output Distribution: negative_binomial(5, 0.75)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 281ns
Raw Samples: 3, 2, 1, 1, 1
Test Samples: 10000
Sample Statistics:
 Minimum: 0
 Median: 1
 Maximum: 13
 Mean: 1.6589
 Std Deviation: 1.5055821026256837
Sample Distribution:
 0: 24.51%
 1: 28.64%
 2: 22.76%
 3: 12.98%
 4: 6.35%
 5: 2.65%
 6: 1.24%
 7: 0.55%
 8: 0.18%
 9: 0.06%
 10: 0.03%
 11: 0.04%
 13: 0.01%

Output Distribution: geometric(0.75)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 156ns
Raw Samples: 0, 0, 0, 0, 2
Test Samples: 10000
Sample Statistics:
 Minimum: 0
 Median: 0
 Maximum: 7
 Mean: 0.3328
 Std Deviation: 0.6725246381649478
Sample Distribution:
 0: 75.32%
 1: 18.35%
 2: 4.54%
 3: 1.43%
 4: 0.27%
 5: 0.07%
 6: 0.01%
 7: 0.01%

Output Distribution: poisson(4.5)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 1843ns
Raw Samples: 5, 2, 1, 6, 1
Test Samples: 10000
Sample Statistics:
 Minimum: 0
 Median: 4
 Maximum: 15
 Mean: 4.4792
 Std Deviation: 2.0852822831022237
Sample Distribution:
 0: 1.17%
 1: 4.9%
 2: 11.45%
 3: 16.48%
 4: 18.88%
 5: 17.92%
 6: 12.88%
 7: 8.08%
 8: 4.68%
 9: 1.97%
 10: 1.15%
 11: 0.32%
 12: 0.06%
 13: 0.04%
 14: 0.01%
 15: 0.01%

Output Distribution: discrete(7, 1, 30, 1)
Approximate Single Execution Time: Min: 656ns, Mid: 687ns, Max: 1125ns
Raw Samples: 2, 2, 4, 6, 6
Test Samples: 10000
Sample Statistics:
 Minimum: 0
 Median: 4
 Maximum: 6
 Mean: 4.0281
 Std Deviation: 1.719362094092184
Sample Distribution:
 0: 3.58%
 1: 6.67%
 2: 10.06%
 3: 15.03%
 4: 17.77%
 5: 21.49%
 6: 25.4%


Floating Point Tests

Output Distribution: Random.random()
Approximate Single Execution Time: Min: 31ns, Mid: 46ns, Max: 93ns
Raw Samples: 0.28191876901126556, 0.34571049244439367, 0.5761883274557041, 0.5805467771548505, 0.9142637634051997
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 6.997243834505618e-05
 Median: (0.4980955259203752, 0.4981058794530985)
 Maximum: 0.9998432526044941
 Mean: 0.49774923104713104
 Std Deviation: 0.28818355339000473
Post-processor Distribution using round method:
 0: 50.2%
 1: 49.8%

Output Distribution: random()
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 62ns
Raw Samples: 0.9277214931837745, 0.6509596650539976, 0.3884877983068201, 0.3001884108775585, 0.1926429270120671
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 0.00012157670983074331
 Median: (0.5015995486843443, 0.5016697332763964)
 Maximum: 0.9998875813469635
 Mean: 0.5009411253451888
 Std Deviation: 0.28731500760837936
Post-processor Distribution using round method:
 0: 49.86%
 1: 50.14%

Output Distribution: uniform(0.0, 10.0)
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 375ns
Raw Samples: 9.52326631756773, 5.788502600367225, 7.415690772199376, 7.569192571902404, 6.5217292266843785
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 4.3133609512452766e-05
 Median: (4.958204426955742, 4.958965795675051)
 Maximum: 9.999683844464784
 Mean: 5.005599483579845
 Std Deviation: 2.914603141441438
Post-processor Distribution using ceil method:
 1: 10.22%
 2: 10.04%
 3: 9.91%
 4: 10.12%
 5: 10.14%
 6: 9.53%
 7: 9.45%
 8: 10.0%
 9: 9.98%
 10: 10.61%

Output Distribution: Random.expovariate(1.0)
Approximate Single Execution Time: Min: 406ns, Mid: 437ns, Max: 718ns
Raw Samples: 1.32394193144772, 0.8401838247284389, 0.3453007881938971, 0.5768026156187437, 1.389079549244938
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 0.00021917169276148592
 Median: (0.6867670428429513, 0.6868587576520037)
 Maximum: 8.993301902164722
 Mean: 0.9987437574625477
 Std Deviation: 0.995794178653755
Post-processor Distribution using floor_mod_10 method:
 0: 63.38%
 1: 22.64%
 2: 8.84%
 3: 3.2%
 4: 1.37%
 5: 0.34%
 6: 0.19%
 7: 0.02%
 8: 0.02%

Output Distribution: expovariate(1.0)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 187ns
Raw Samples: 0.7449181736161731, 2.1499135794632815, 1.9209513819104198, 0.11374160460575472, 0.032772819469421156
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 7.509111316908552e-05
 Median: (0.7012021063239969, 0.7013754068583695)
 Maximum: 10.051181350277634
 Mean: 1.0123974449763105
 Std Deviation: 0.9948400311997716
Post-processor Distribution using floor_mod_10 method:
 0: 62.44%
 1: 23.97%
 2: 8.94%
 3: 2.87%
 4: 1.1%
 5: 0.45%
 6: 0.14%
 7: 0.06%
 8: 0.02%
 9: 0.01%

Output Distribution: Random.gammavariate(1.0, 1.0)
Approximate Single Execution Time: Min: 468ns, Mid: 500ns, Max: 656ns
Raw Samples: 0.4248242549456541, 0.33886371041571733, 2.6616762762556223, 1.64457361834173, 0.46794770217911014
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 0.00031988918156716393
 Median: (0.6949624128501429, 0.6950700498245157)
 Maximum: 9.853792287175022
 Mean: 0.9960981136961425
 Std Deviation: 0.9785418021506311
Post-processor Distribution using floor_mod_10 method:
 0: 63.05%
 1: 23.38%
 2: 8.87%
 3: 3.02%
 4: 1.13%
 5: 0.34%
 6: 0.15%
 7: 0.04%
 9: 0.02%

Output Distribution: gammavariate(1.0, 1.0)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 125ns
Raw Samples: 0.1848643722791521, 0.08642349625604238, 1.7451548721325887, 0.4092167346467269, 2.7151799826636407
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 0.00011452760428491575
 Median: (0.6963156440769845, 0.6964168743660308)
 Maximum: 9.268602662993539
 Mean: 0.9986252847849186
 Std Deviation: 1.0059055124912586
Post-processor Distribution using floor_mod_10 method:
 0: 63.48%
 1: 22.88%
 2: 8.69%
 3: 3.14%
 4: 1.08%
 5: 0.47%
 6: 0.13%
 7: 0.08%
 8: 0.02%
 9: 0.03%

Output Distribution: weibullvariate(1.0, 1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 250ns
Raw Samples: 0.0024417756831744118, 0.45388273365845716, 0.3746197787223339, 0.18553781359441182, 0.3433004659304176
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 0.00016580833555425683
 Median: (0.698439109055173, 0.6992482552444275)
 Maximum: 8.679623833163621
 Mean: 1.0037492539881026
 Std Deviation: 1.002106144986341
Post-processor Distribution using floor_mod_10 method:
 0: 63.57%
 1: 23.05%
 2: 8.29%
 3: 3.22%
 4: 1.18%
 5: 0.39%
 6: 0.2%
 7: 0.08%
 8: 0.02%

Output Distribution: extreme_value(0.0, 1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 187ns
Raw Samples: -0.11241366431993004, -0.6419972165998858, -0.5915740518117466, 1.8516325182456397, 1.4911620758558133
Test Samples: 10000
Pre-processor Statistics:
 Minimum: -2.3190180335156594
 Median: (0.38956671577541396, 0.38972187184305407)
 Maximum: 7.924377123063762
 Mean: 0.5908199593570642
 Std Deviation: 1.2786545980930044
Post-processor Distribution using round method:
 -2: 1.02%
 -1: 17.94%
 0: 34.61%
 1: 26.02%
 2: 12.6%
 3: 5.03%
 4: 1.7%
 5: 0.68%
 6: 0.25%
 7: 0.09%
 8: 0.06%

Output Distribution: Random.gauss(5.0, 2.0)
Approximate Single Execution Time: Min: 687ns, Mid: 718ns, Max: 1281ns
Raw Samples: 4.596778666373776, 5.574956391552119, 4.927272977874008, 3.3576119610202855, 2.4100020707684218
Test Samples: 10000
Pre-processor Statistics:
 Minimum: -3.6083886202460214
 Median: (5.033226242209256, 5.0335060153604045)
 Maximum: 12.632576601043258
 Mean: 5.046530547342325
 Std Deviation: 2.004364914617757
Post-processor Distribution using round method:
 -4: 0.01%
 -3: 0.01%
 -2: 0.03%
 -1: 0.21%
 0: 0.73%
 1: 2.69%
 2: 6.59%
 3: 11.78%
 4: 17.96%
 5: 18.44%
 6: 17.64%
 7: 13.08%
 8: 6.58%
 9: 2.9%
 10: 0.95%
 11: 0.31%
 12: 0.08%
 13: 0.01%

Output Distribution: normalvariate(5.0, 2.0)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 312ns
Raw Samples: 5.038030209503104, 3.359561942445354, 4.572812939693202, 8.126416493515116, 4.216197473154431
Test Samples: 10000
Pre-processor Statistics:
 Minimum: -2.8244138455476255
 Median: (5.010628778981261, 5.011392832574677)
 Maximum: 13.269369959352195
 Mean: 5.0215758697664
 Std Deviation: 1.9947500854542106
Post-processor Distribution using round method:
 -3: 0.01%
 -2: 0.05%
 -1: 0.21%
 0: 0.96%
 1: 2.39%
 2: 6.48%
 3: 12.26%
 4: 17.68%
 5: 19.43%
 6: 17.81%
 7: 11.93%
 8: 6.7%
 9: 2.62%
 10: 1.12%
 11: 0.28%
 12: 0.06%
 13: 0.01%

Output Distribution: Random.lognormvariate(1.6, 0.25)
Approximate Single Execution Time: Min: 812ns, Mid: 875ns, Max: 1187ns
Raw Samples: 4.474956815444135, 5.406628012593374, 4.3147748443859975, 5.229698007026149, 5.805648508074925
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 2.1592473372696683
 Median: (4.981247654229032, 4.981431587007508)
 Maximum: 12.671163322520604
 Mean: 5.132779483395387
 Std Deviation: 1.3094393573417653
Post-processor Distribution using round method:
 2: 0.23%
 3: 7.61%
 4: 26.52%
 5: 31.34%
 6: 20.31%
 7: 8.77%
 8: 3.51%
 9: 1.18%
 10: 0.35%
 11: 0.15%
 12: 0.02%
 13: 0.01%

Output Distribution: lognormvariate(1.6, 0.25)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 406ns
Raw Samples: 4.938919260086636, 5.434117630265477, 6.292684741793481, 5.591227647047072, 6.383314060542857
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 1.9012210055454757
 Median: (4.930393438457221, 4.930698683927044)
 Maximum: 12.24543656869312
 Mean: 5.0809499926488515
 Std Deviation: 1.2940795405602143
Post-processor Distribution using round method:
 2: 0.37%
 3: 8.09%
 4: 27.58%
 5: 31.01%
 6: 19.6%
 7: 8.6%
 8: 3.14%
 9: 1.23%
 10: 0.28%
 11: 0.07%
 12: 0.03%

Output Distribution: chi_squared(1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 281ns
Raw Samples: 0.6805083519116017, 1.9550487232090856, 3.1923066239705897, 0.7482375804617535, 0.05893635106952869
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 1.2950679446718288e-08
 Median: (0.4447742902987775, 0.4447876206214249)
 Maximum: 17.282815421421066
 Mean: 0.9852303311570941
 Std Deviation: 1.4162939999610573
Post-processor Distribution using floor_mod_10 method:
 0: 69.18%
 1: 15.69%
 2: 7.22%
 3: 3.71%
 4: 1.92%
 5: 1.02%
 6: 0.49%
 7: 0.46%
 8: 0.2%
 9: 0.11%

Output Distribution: cauchy(0.0, 1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 343ns
Raw Samples: 0.3685024684657171, 2.136219163967241, -7.187956700268334, 0.5046978970967958, 0.25077902780286254
Test Samples: 10000
Pre-processor Statistics:
 Minimum: -4053.635265519228
 Median: (-0.016399201162256117, -0.01628035430859785)
 Maximum: 2460.8880793857484
 Mean: -0.2140735774162542
 Std Deviation: 55.57660735278535
Post-processor Distribution using floor_mod_10 method:
 0: 25.92%
 1: 11.41%
 2: 5.87%
 3: 3.64%
 4: 3.01%
 5: 2.89%
 6: 3.83%
 7: 5.64%
 8: 11.32%
 9: 26.47%

Output Distribution: fisher_f(8.0, 8.0)
Approximate Single Execution Time: Min: 187ns, Mid: 218ns, Max: 250ns
Raw Samples: 0.9903817011827296, 1.676148670773987, 0.5863562883570347, 0.4007789603150157, 0.8292160403875725
Test Samples: 10000
Pre-processor Statistics:
 Minimum: 0.03385437523363254
 Median: (0.9992376778614822, 0.9994361477620272)
 Maximum: 21.51882952241599
 Mean: 1.3380931208465716
 Std Deviation: 1.1949223974559842
Post-processor Distribution using floor_mod_10 method:
 0: 50.06%
 1: 32.12%
 2: 10.59%
 3: 4.03%
 4: 1.63%
 5: 0.67%
 6: 0.46%
 7: 0.18%
 8: 0.16%
 9: 0.1%

Output Distribution: student_t(8.0)
Approximate Single Execution Time: Min: 156ns, Mid: 156ns, Max: 187ns
Raw Samples: -2.3130996405163233, -0.2087723821531655, -3.5190475767973295, 0.7309835695070587, 0.28003380239529446
Test Samples: 10000
Pre-processor Statistics:
 Minimum: -6.946803668089897
 Median: (-0.014189823253801227, -0.01365902594078134)
 Maximum: 6.934129090915844
 Mean: -0.012459466691732571
 Std Deviation: 1.1542721013079078
Post-processor Distribution using round method:
 -7: 0.01%
 -6: 0.01%
 -5: 0.09%
 -4: 0.29%
 -3: 1.49%
 -2: 6.53%
 -1: 23.85%
 0: 36.72%
 1: 22.35%
 2: 6.65%
 3: 1.65%
 4: 0.29%
 5: 0.05%
 6: 0.01%
 7: 0.01%


=========================================================================
Total Test Time: 1.0982 seconds

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RNG-0.2.2.tar.gz (105.9 kB view details)

Uploaded Source

Built Distribution

RNG-0.2.2-cp37-cp37m-macosx_10_9_x86_64.whl (103.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file RNG-0.2.2.tar.gz.

File metadata

  • Download URL: RNG-0.2.2.tar.gz
  • Upload date:
  • Size: 105.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2

File hashes

Hashes for RNG-0.2.2.tar.gz
Algorithm Hash digest
SHA256 5389a072995b8d1fe5b8438a4830bbcb86cd867c556537cfde12849c24b67d80
MD5 0e97ee2e158844c593ecc4b97647d562
BLAKE2b-256 9b2ef8e9fe8816a141e314cb21979e9c12bbeb1c9c8dd997f8bc9c30cd72dcb4

See more details on using hashes here.

File details

Details for the file RNG-0.2.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: RNG-0.2.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 103.6 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2

File hashes

Hashes for RNG-0.2.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d75c64eec3d76c24caa2cdc4ecdb5cca6e95124f2bf73dad88e1d39001f22406
MD5 633438cf78c47982ff232c82e82b0547
BLAKE2b-256 87a5af05fef355981e8b2a3f405800a99ef072b4c390778c1bf2a448722620bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page