Skip to main content

Tools for building spectral methods

Project description

The SpectralToolbox is a collection of tools useful for spectral approximation methods in one or more dimensions. It include the construction of traditional orthogonal polynomials. Additionally one can construct orthogonal polynomials with respect to a selected measure.

Description

Implementation of Spectral Methods in N dimension.

Available polynomials:
  • Jacobi
  • Hermite Physicist
  • Hermite Function
  • Hermite Probabilistic
  • Laguerre Polynomial
  • Laguerre Function
  • ORTHPOL package (generation of recursion coefficients using [1])
Available quadrature rules (related to selected polynomials):
  • Gauss
  • Gauss-Lobatto
  • Gauss-Radau
Available quadrature rules (without polynomial selection):
  • Kronrod-Patterson on the real line
  • Kronrod-Patterson uniform
  • Clenshaw-Curtis
  • Fejer’s

Installation

For everything to go smooth, I suggest that you first install some dependencies separately: numpy, scipy, matplotlib can be installed by:

$ pip install numpy scipy matplotlib

If you want to accelerate some of the functionalities and work with orthogonal polynomials with respect to arbitrary measures, you should intall the orthpol package. This dependency is optional. The installation might require you to tweak some flags for the compiler (with gcc nothing should be needed).

$ pip install orthpol

Finally you can install the toolbox by:

$ pip install SpectralToolbox

References

[1]
  1. Gautschi, “Algorithm 726: ORTHPOL – a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules”. ACM Trans. Math. Softw., vol. 20, issue 1, pp. 21-62, 1994

Project details


Release history Release notifications

History Node

1.0.9

History Node

1.0.8

History Node

1.0.7

History Node

1.0.6

History Node

1.0.4

History Node

1.0.3

History Node

1.0.2

History Node

1.0.1

History Node

0.3.0

History Node

0.2.48

History Node

0.2.47

History Node

0.2.46

History Node

0.2.45

History Node

0.2.44

History Node

0.2.43

History Node

0.2.42

History Node

0.2.41

History Node

0.2.40

History Node

0.2.39

History Node

0.2.38

History Node

0.2.37

History Node

0.2.36

History Node

0.2.35

History Node

0.2.34

History Node

0.2.33

History Node

0.2.32

History Node

0.2.31

History Node

0.2.30

History Node

0.2.29

History Node

0.2.28

History Node

0.2.27

History Node

0.2.26

History Node

0.2.25

History Node

0.2.24

History Node

0.2.23

History Node

0.2.22

History Node

0.2.21

History Node

0.2.20

History Node

0.2.19

History Node

0.2.18

History Node

0.2.17

History Node

0.2.16

History Node

0.2.15

History Node

0.2.14

History Node

0.2.13

History Node

0.2.11

History Node

0.2.10

History Node

0.2.9

History Node

0.2.8

History Node

0.2.7

History Node

0.2.6

History Node

0.2.5

History Node

0.2.4

History Node

0.2.3

History Node

0.2.2

History Node

0.2.1

History Node

0.2.0

History Node

0.1.20

History Node

0.1.19

History Node

0.1.18

History Node

0.1.17

History Node

0.1.16

History Node

0.1.15

History Node

0.1.14

History Node

0.1.13

History Node

0.1.12

History Node

0.1.10

History Node

0.1.9

This version
History Node

0.1.8

History Node

0.1.7

History Node

0.1.6

History Node

0.1.5

History Node

0.1.3

History Node

0.1.2

History Node

0.1.1

History Node

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
SpectralToolbox-0.1.8.tar.gz (725.8 kB) Copy SHA256 hash SHA256 Source None May 20, 2014

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page