Short text Classifier based on Numpy,scikit-learn,Pandas,Matplotlib
Project description
A simple, efficient short-text classification tool based on Numpy,scikit-learn,Pandas,Matplotlib.
Train Data Format
type |
Text |
---|---|
game |
The LoL champions pro players would ban forever |
society |
In Beijing you should keep the rules |
etc. |
etc. |
Sample Usage
>>> import TextClassifier
# cerat classifier container
>>> tc = TextClassifier.classifier_container()
# load data.sep Default = ',' you can change it to '\t',etc.
>>> tc.load_Data('../data/Train_data.txt',sep=',')
# train the model
>>> tc.train()
# prediction. Input list or text-String
>>> print tc.predict('Faker is the first League of Legends player to earn over $1 million in prize money')
>>> [u'game']
>>> print tc.predict(['Faker is the first League of Legends player to earn over $1 million in prize money',
'18-year-old youth killed 88-year-old veteran',
'Take you into the real North Korea'])
>>> [u'game',u'society',u'world']
#get X_train, X_test, y_train, y_test
>>> from sklearn import cross_validation
>>> X_train, X_test, y_train, y_test = cross_validation.train_test_split(original_data['Text'], original_data['Categorization'], test_size=0.3, random_state=0)
#get TrainData Accuracy
>>> tc.Accuracy(X_train, y_train)
>>> Accuracy:
>>> 0.917504310503
#get Confusion Matrix
>>> Y_predict = tc.predict(X_test)
>>> tc.confusion_matrix(y_test, Y_predict)
>>> Confusion Matrix :
military baby car game food sports finance discovery regimen travel fashion history society story tech world entertainment essay
military 2831 5 3 16 9 4 8 10 0 15 8 24 9 3 6 42 6 1
baby 0 2932 3 3 26 0 1 0 10 7 10 3 16 4 3 7 20 4
car 6 10 2813 3 6 8 13 3 1 13 10 3 39 1 11 5 24 4
game 10 11 6 2843 5 9 2 4 1 11 13 3 8 4 25 3 31 3
food 0 38 0 3 2799 1 5 1 67 34 16 7 9 3 4 8 14 10
sports 2 7 6 13 6 2803 9 0 1 13 24 5 10 1 5 19 42 4
finance 12 10 13 4 15 6 2692 1 2 21 5 3 18 2 79 47 12 8
discovery 8 2 0 3 3 2 5 1155 1 5 1 1 1 0 13 9 0 1
regimen 0 59 0 0 63 0 2 0 1093 0 3 3 4 2 0 1 5 0
travel 9 19 8 8 23 4 9 8 0 2741 19 20 19 7 13 55 14 12
fashion 2 21 5 9 14 9 1 5 13 18 2772 5 7 1 6 11 77 7
history 49 9 2 3 6 3 3 6 4 28 3 2813 12 20 2 35 21 6
society 27 77 50 7 43 7 42 5 16 78 27 13 2414 29 36 36 58 15
story 3 17 1 3 7 2 2 2 2 7 5 12 19 1120 4 6 14 11
tech 16 8 19 21 6 3 52 13 3 6 5 4 14 0 2787 9 17 7
world 52 33 12 8 9 16 33 24 2 35 27 37 50 8 20 2583 30 4
entertainment 5 14 3 28 6 13 4 3 1 9 120 29 17 3 12 10 2708 8
essay 7 23 5 3 12 1 8 6 4 15 22 11 7 2 5 2 11 1010
#get sub_result and Figure
>>> tc.plot_display(y_test, Y_predict)
>>> Plot display...
Test count: Predict count: Sub Result: Sub_Abs Result:
baby 3049 3295 246 246
car 2973 2949 -24 24
discovery 1210 1246 36 36
entertainment 2993 3104 111 111
essay 1154 1115 -39 39
fashion 2983 3090 107 107
finance 2950 2891 -59 59
food 3019 3058 39 39
game 2992 2978 -14 14
history 3025 2996 -29 29
military 3000 3039 39 39
regimen 1235 1221 -14 14
society 2980 2673 -307 307
sports 2970 2891 -79 79
story 1237 1210 -27 27
tech 2990 3031 41 41
travel 2988 3056 68 68
world 2983 2888 -95 95
Installation
$ pip install TextClassifier
Links
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file TextClassifier-0.0.7.0.tar.gz
.
File metadata
- Download URL: TextClassifier-0.0.7.0.tar.gz
- Upload date:
- Size: 4.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5fe57497f72f9862a94497a28ee00d208f172eeb156c127f831e00c416b59624 |
|
MD5 | 4279982b746f15fbe46146d13c9bd983 |
|
BLAKE2b-256 | 7f5d78bf6fa5320c1ba3d1c44fa369eb5df09f2e6a02f61d8c4edab12b20bd9b |