PyTorch implementation of reverse-accurate ODE solvers for Neural ODEs
Project description
PyTorch implementation of two papers: (1) Adaptive checkpoint adjoint method for gradient estimation in Neural ODEs (2) MALI: a memory efficient and reverse accurate integrator for Neural ODEs
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
TorchDiffEqPack-0.1.0.tar.gz
(26.9 kB
view details)
Built Distribution
File details
Details for the file TorchDiffEqPack-0.1.0.tar.gz
.
File metadata
- Download URL: TorchDiffEqPack-0.1.0.tar.gz
- Upload date:
- Size: 26.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c2908e352a03fe145c0e7b7437592c86b1da53bb0fe25a20fc00497fab093d5 |
|
MD5 | c31f7e2bfc2d42f92049082234b8063f |
|
BLAKE2b-256 | 480689d470792ce1fc2fba1aeab0ea06c5bde71cc0ebb8ca6fac659a6b7991d6 |
File details
Details for the file TorchDiffEqPack-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: TorchDiffEqPack-0.1.0-py3-none-any.whl
- Upload date:
- Size: 34.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 33f106a8172deeb039a76fad28daa949c2c07660d0f91541468fa7af7ecddd79 |
|
MD5 | 251716bcdc3ea3ca132348555c513e82 |
|
BLAKE2b-256 | 3572a7af0719b3a50bc366343f6224af92e46135c932766d3254cd36412203ee |